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ABSTRACT
We consider estimation of the noise spectral variance from speech
signals contaminated by highly nonstationary noise sources. In each
time frame, for each frequency bin, the noise variance estimate is
updated recursively with the MinimumMean-Square Error (MMSE)
estimate of the current noise power. For the estimation of the noise
power, a spectral gain function is used, which is found by an it-
erative data-driven training method. The proposed noise tracking
method can accurately track fast changes in noise level (up to about
10 dB/s). When compared to theMinimum Statistics method for var-
ious noise sources in a speech enhancement system, improvements
in segmental signal-to-noise ratio of more than 1 dB are obtained.

Index Terms— Speech enhancement, acoustic noise, tracking
filters, least mean square methods.

1. INTRODUCTION
Single-channel speech enhancement methods based on the Discrete
Fourier Transform (DFT) have received significant interest due to
their low complexity and relatively good performance, e.g., [1–4].
These and other methods need accurate estimates of the noise spec-
trum to perform optimally. Many natural noise sources are nonsta-
tionary and it is therefore necessary to make reliable noise spectrum
estimates also during speech activity. It is a challenging problem
to avoid speech power leaking into the noise spectrum estimates.
In recent years, several methods for tracking of nonstationary noise
sources have appeared in the literature. Rangachari and Loizou [5]
give an overview. An idea that has been proven quite successful is
to track the minima of the smoothed noisy spectrum [6, 7]. Sev-
eral methods make use of some kind of minimum tracking proce-
dure [5–9].

The limited ability of these and other methods to instantaneously
follow rapid increases in noise level stems from having to use a
rather long time window for the minimum tracking in order to avoid
speech leakage. In Section 3 wewill propose to useMinimumMean-
Square Error (MMSE) estimation of the noise power to update the
noise spectrum estimates with a reduced risk of speech leakage. The
MMSE estimates are obtained with the standard method of multi-
plying the noisy powers by a spectral gain function. This removes
most of the speech contribution from the noisy spectrum, allowing
for fast and accurate tracking of changing noise levels. The spec-
tral gain function for noise power estimation is found by an iterative
data-driven method. The proposed noise tracking method can fol-
low changes in noise level up to about 10 dB/s. We will evaluate
the proposed method in Section 4 and compare with the Minimum
Statistics (MS) method, in terms of tracking performance and overall
performance in a speech enhancement scheme.
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2. MODELING ASSUMPTIONS AND DEFINITIONS
2.1. Spectral modeling
We consider an additive-noise signal model of the form

X(k, m) = S(k, m) + N(k, m), (1)

where X(k, m), S(k, m), and N(k, m) are complex-valued ran-
dom variables representing the short-time DFT coefficients at fre-
quency index k in signal frame m from the noisy speech, clean
speech and noise process, respectively. We apply the standard as-
sumption that S(k, m) and N(k, m) are statistically independent
across time and frequency as well as from each other. For ease of no-
tation we therefore drop the time and/or frequency index when this
does not cause confusion. The noisy speech amplitude is R = |X|,
the speech spectral amplitude is A = |S|, and the noise amplitude
D = |N |. The noise DFT coefficients N are assumed to follow a
complex Gaussian distribution with variance λN . We will call D2

the (instantaneous) noise power. Its expectation is λN . Similarly,
the speech spectral variance λS is the expectation of A2. The prior
SNR ξ and the posterior SNR ζ are defined as

ξ(k, m) =
λS(k, m)

λN(k, m)
, ζ(k, m) =

R2(k, m)

λN(k, m)
. (2)

2.2. Amplitude estimation
Any power Ap of the speech amplitude can be estimated as

Âp = G
Ap (ξ, ζ)Rp , (3)

where G
Ap is a suitable gain function depending on the assumed

statistical models for the speech and the noise and on the criterion
that is optimized for. Later on, we will estimate the noise power D2

by means of a gain function G
D2
.

3. USINGMMSE ESTIMATION OF THE NOISE POWER
TO REDUCE SPEECH LEAKAGE

Many noise tracking algorithms have difficulty in tracking fast in-
creases in noise level [5]. For example, the rather slow response to
such increases of methods based on minimum statistics is a result
of using a window of considerable length in order to prevent speech
power from leaking into the noise variance estimates. The key idea
to the method proposed below is to avoid using the noisy power R2

directly by removing as much as possible of the speech contribution
from it, before smoothing with an exponential smoother. That is, we
propose to estimate the noise variance as follows:

λ̂N (k, m) = αs(k, m)λ̂N(k, m− 1) + (1− αs(k, m))D̂2(k, m).
(4)
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The smoothing parameter αs(k, m) depends on an estimate p̂(k, m)
of speech presence probability:

αs(k, m) = αd + (1− αd)p̂(k, m), (5)

where αd is fixed between 0 and 1 (All parameter settings are given
in Section 4.1.1). Using D̂2 instead of R2 causes less speech power
to leak into the noise variance estimate. Consequently, the speech
presence probability estimator does not need to be extremely accu-
rate, the smoothing parameter does not need to be close to 1 very
frequently and faster tracking can be achieved. For D̂2 we will use
theMMSE estimator of the noise powerD2. An iterative data-driven
method is used to find the optimal gain functionG

D2
(Section 3.4.1).

An adaptive smoothing parameter such as (5) has been used before,
e.g., in [5,9], but here a simplified estimation procedure for p̂ will be
used that allows for faster tracking.

3.1. Speech presence probability estimation
We propose the following estimator of p̂. First, the posterior SNR is
smoothed over a few neighboring frequency bins to take into account
the strong correlation of speech presence in neighboring frequency
bins [9]:

ζ̃(k, m) =
w∑

i=−w

b(i)ζ(k − i, m), with
w∑

i=−w

b(i) = 1 (6)

Next, a hard decision about speech presence is made:

I(k,m) =

{
1 (speech presence) : ζ̃(k, m) > T (k, m)

0 (speech absence) : ζ̃(k, m) ≤ T (k, m)
(7)

The speech presence probability estimate is updated with I(k, m):

p̂(k, m) = αp p̂(k, m− 1) + (1− αp)I(k, m), (8)

with αp between 0 and 1. This estimate is used in (5) to find the
smoothing parameter αs. This procedure for calculating αs is simi-
lar to that in [5]. There, the ratio of the smoothed noisy spectrum and
its local minimum is compared in (7) against a threshold. The local
minimum in [5] is tracked with an adaptation time of about 0.5 sec-
onds for non-stationary noise. Here we only use the posterior SNR
of the current time frame in (7), and we can therefore react almost
instantaneously to changing noise levels. The parameter T controls
the trade-off between the tracking speed and the amount of speech
leakage. The higher its value, the faster the tracking speed, but the
higher the risk of speech leakage.

3.2. Prior SNR estimation
The gain functions take the prior and posterior SNRs as arguments.
These parameters are unknown in practice and have to be estimated.
We have found that the noise tracking performance depends on the
particular prior SNR estimator used. While the ”decision-directed”
estimator [2] is very suitable for speech spectral amplitude estima-
tion, we found that a modified estimator (Section (3.2.2)) improves
noise tracking performance. We will therefore use different estima-
tors for the speech estimation and noise tracking tasks.

3.2.1. Prior SNR estimator ξ̂SE for Speech Enhancement
For speech estimation, the ”decision-directed” estimator [2] is used,
with a bias correction [10]:

ξ̂SE(k, m) = αSE

Â2(k, m− 1)

λ̂N(k, m)
+ (1− αSE)[

R2(k, m)

λ̂N (k, m)
− 1],

(9)

where we will use the latest available estimate of the noise variance
λ̂N(k, m).

3.2.2. Prior SNR parameter ξ̂NT for Noise Tracking
Errors in the estimated noise variance will affect the estimated prior
and posterior SNR. However, the decision-directed prior SNR esti-
mates will be affected more than the posterior SNR estimates for the
following reason. If λN is overestimated (underestimated), ξ and
ζ will be underestimated (overestimated). This means that the gain
functionG

A2
(ξ̂SE, ζ̂)will suppress too much (too little), causing the

errors in λ̂N and Â2 to become negatively correlated. Therefore, an
error in λ̂N will tend to amplify itself in the first term of (9). The
errors in numerator and denominator are also negatively correlated
in the second term, because R2/λ̂N − 1 equals (R2− λ̂N )/λ̂N . As
input to G

D2
, we will therefore use the following parameter ξ̂NT ,

which is less sensitive to errors in λ̂N :

ξ̂NT (k, m) = αNT

R2(k, m− 1)

λ̂N(k, m)
+ (1− αNT )

R2(k, m)

λ̂N(k, m)
. (10)

It is clear that ξ̂NT is not an unbiased estimator of λS . However, this
is not a problem, because the gain function G

D2
will be adapted to

this parameter by means of a data-driven method (Section 3.4) and
the bias will be compensated for.

3.3. Safety net
In Section 4, we will show that our noise tracker can easily follow
very fast changes in noise level up to about 10 dB/s. However, if the
noise level increases even much faster than that, for example, when it
suddenly jumps to a high level and stays at that level, ζ̃ in (6) will be
calculated on the basis of a noise variance estimate which is too low.
It therefore becomes more likely that a speech presence decision is
made in (7), and the algorithm will react more slowly. We there-
fore propose a simple and effective safety net, which ensures that
the algorithm continues to work properly also under such extreme
conditions. The idea is to push the noise variance estimate into the
right direction when we detect that its value is much too low. As
a reference value, we use the minima Pmin(k, m) of the smoothed
values P (k, m) of the noisy power R2(k, m) in a short window of
length wmin, where P (k, m) is given by

P (k, m) = ηP (k, m− 1) + (1− η)R2(k, m), (11)

where η is a smoothing parameter close to 0. After updating λ̂N

with (4), we check whether it fulfills the following condition:

B · Pmin(k, m) < λ̂N(k, m), (12)

where B > 1 is a correction factor. In case of a large increase in
noise level that the algorithm cannot follow, B · Pmin(k, m) will
become larger than λ̂N (k, m) after a time of the order of the win-
dow length. If that happens, we reset the λ̂N(k, m) values that vio-
lated (12) to max

[
B · Pmin(k, m), D̂2(k, m)

]
, and the correspond-

ing p̂(k, m) to 0. We have observed that the value of B and the
window length are not very critical for good performance, but a win-
dow length of at least 0.5 seconds is required.

3.4. Finding the gain function for noise power estimation
For D̂2 we would ideally like to use the MMSE estimator. However
the optimal gain function is very hard to derive analytically. The
main reason is that the input parameters to the gain function depend

4874



on the quantity λ̂N(k, m), which must be computed using the gain
function. In other words, a nonlinear recursion is introduced which
is usually ignored in the analytical derivation of gain functions. We
therefore resort to a data-driven method to find the gain function.
We will make use of the method in [10], in an iterative fashion (Sec-
tion 3.4.1). This method makes no explicit assumptions about the
speech statistics and can also take into account the influence of es-
timation inaccuracies in the estimated speech and noise variances.
The method of [10] is briefly recapitulated first.

3.4.1. Data-driven gain optimization
A large training database of speech material is used, contaminated
with various levels of stationary white Gaussian noise of known
SNR. For all training data, the prior and posterior SNRs are calcu-
lated for every time frame and every frequency index. Their values
are discretized on a grid, typically in 1 dB steps. Each (ξ̂,ζ)-pair
has a corresponding (D2,R2)-pair associated with it. Statistics are
collected for all training data and afterwards one scalar gain value
G

D2
is computed for each grid cell such that the mean-square error

between theD2 and D̂2 is minimized.
The grid used in this paper covers the range [-19 dB, 40 dB] for ξ

and [-30 dB, 40 dB] for ζ, both in steps of 1 dB. The training speech
data consisted of about 25% of the TIMIT-TRAIN database. To each
file, white noise has been added at several SNRs, from −12.5 dB
to 27.5 dB in steps of 5 dB. Noise only frames are not taken into
account: frames with a clean energy more than 40 dB below the
maximum clean frame energy of a speech sentence are not taken
into account for optimization of the gain function.

During the training with the above method, the noise variance
λN is known. When the resulting gain table G

D2
is used with the

noise tracking method outlined earlier in this section, the noise vari-
ance is unknown but is estimated using G

D2
. Fortunately, the gain

function can still be optimized while taking into account this recur-
sion by means of an iterative scheme explained next.

The idea is to iteratively update the gain function G
D2
, while

taking into account the estimation of λN . Let the value of any quan-
tity in the i-th iteration be denoted by a subscript i. For example,
G

D2,i
is the gain function for D2-estimation in the i-th iteration. To

break the recursion, G
D2 ,i

is only used to compute data to be used in
the next iteration. The input parameters of G

D2,i
, ξ̂NT,i(k, m) and

ζ̂i(k, m), depend only on data computed in the previous iteration.
The optimization procedure is as follows:

0) Initialization (i = 0): D̂2
i(k, m) = D2(k, m),

λ̂N,i(k, m) = λN(k, m)

1) Compute ζ̂i, ξ̂NT,i: ζ̂i(k, m) = R2(k, m)/λ̂N,i(k, m),
ξ̂NT,i(k, m) = αNT

R2(k,m−1)

λ̂N,i(k,m)
+ (1− αNT ) R2(k,m)

λ̂N,i(k,m)

Collect (D2, R2) statistics per grid cell;
Update αs,i(k, m) and λ̂N,i: λ̂N,i(k, m + 1) =

αs,i(k, m)λ̂N,i(k, m) + (1− αs,i(k, m))D̂2
i(k, m)

m := m + 1;
Complete step 1) for all training data;

2) Minimize theMSE in D̂2 for each grid cell⇒ G
D2,i+1

(ξNT , ζ)

3) Compute data for the next iteration: D̂2
i+1(k, m) =

G
D2 ,i+1

(ξ̂NT,i(k, m), ζ̂i(k, m))R2(k, m)

4) i := i + 1; Go to step 1) if i < imax.

This scheme typically converges in less than imax = 7 iterations.
The D̂2

i are initialized with the true noise powers D2. Alter-
natively, they can be initialized with the noisy power R2 or even
the speech power A2. In all cases does the gain table converge to
the same end result. The question arises how this scheme optimizes
for the practical case when there are recursions (i.e., the output of
the gain function in the current time frame is used in the calcula-
tion of the inputs for the next time frame). Convergence means that
G

D2,i
changes less and less from one iteration to the next when i

increases. It also means that the differences between D̂2
i+1 and

D̂2
i become smaller and smaller. But when D̂2

i+1 and D̂2
i be-

come almost equal, we have nearly the same situation as with the
recursion. In fact, we have verified that applying the optimized gain
functions from step 2) to the training data recursively decreases the
mean-square error with each iteration step for all intializations [11].
Iterative optimization of the gain function decreased the MSE by
65% compared to non-iterative optimization with the basic method
in [10].

4. EXPERIMENTAL RESULTS
4.1. Experimental set up
To evaluate the noise tracking performance of our method, we con-
catenated 8 sentences from the TIMIT-TEST database, without inter-
vening pauses (about 29 seconds of speech). Four male and four fe-
male speakers have been used. All signals have been limited to 8 kHz
sampling frequency and telephone bandwidth (300-3400 Hz). The
noise recordings have been taken from the ETSI EG 202 396-1 Back-
ground Noise Database [12]. In addition, computer-generated white
noise is used. Noise tracking performance is measured directly and
also in an enhancement system (DFT-based MMSE speech spectral
amplitude estimation under a generalized-Gamma speech prior [4]).
We used 50%-overlapping frames of 32 ms and a cosine-squared
analysis window.

4.1.1. Parameter settings
The following parameter settings are used in the experiments: αd

in (5) is set to 0.85, αp = 0.1 in (8), and T (k,m) = 4 in (7)
independent of time and frequency. We have used w = 1 and b(i) =
1/(2w + 1) in (6). The same value 0.98 is used for the smoothing
parameters αSE in (9) and αNT in (10). Both ξ̂SE and ξ̂NT are
limited in this work to values larger than ξmin = −19 dB. We use
η = 0.1 in (11), B = 1.5 in (12), and the length of wmin spans 0.8
seconds. A generalized-Gamma speech amplitude prior with γ = 1

and ν = 1 is used to derive Â2 and Â [4].

4.1.2. Performance measures
Two quality measures will be used to evaluate the noise variance
estimation. The first one is the segmental logarithmic estimation
error LogErr, defined as [13]:

LogErr =
1

|M|K

∑
m∈M

∑
k

∣∣∣∣∣10 log10

[
λN(k, m)

λ̂N(k, m)

]∣∣∣∣∣ , (13)

whereK is the number of frequency bins. We left out frames which
don’t contain noise in the computation of LogErr, that is, frames
with a noise energy more than 40 dB below the noise energy of the
frame with maximum noise energy were not included in the index set
M. |M| is the cardinality ofM. This measure is used instead of the
relative estimation error, because it penalizes errors at increasing and
decreasing noise levels more symmetrically. The relative estimation
error has been found to correlate poorly with subjective preference
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Table 1. LogErr [dB] of estimated noise variance for various noise
types and levels, obtained using MS and the proposed method.
SNR Stat. WGN Car interior Traffic Train station
[dB] MS Prop. MS Prop. MS Prop. MS Prop.
0 1.00 0.68 1.43 1.12 2.14 0.89 1.89 1.05
5 1.15 0.79 1.72 1.49 2.26 1.06 2.07 1.23
10 1.26 0.93 2.20 2.00 2.32 1.34 2.22 1.54
15 1.45 1.12 3.15 2.70 2.40 1.79 2.48 2.01
20 1.74 1.50 4.60 3.59 2.77 2.41 3.06 2.62

tests [5]. Prior to evaluating the distortion, the true noise power is
smoothed in time [7]:

λN (k, m) = 0.9λN(k, m− 1) + 0.1D2(k, m). (14)

λN is used as the ideal reference in (13). Objective enhancement
quality was measured by means of the improvement in Segmental
Signal-to-Noise Ratio over the noisy signal (SSNR+). Only frames
that contain speech are taken into account.

4.2. Evaluations
4.2.1. Highly nonstationary white Gaussian noise
The proposed noise tracking method allows for very fast noise track-
ing. As a first example, a highly nonstationary white noise has
been added to the speech material. The noise level is varied be-
tween SNRs of 0 and 20 dB and changes at a maximum rate of 0.16
dB/frame, i.e., 10 dB/s. Fig. 1 shows the ideal reference noise power
level (thin solid line), and the estimated noise levels from our method
(dashed line) and MS (dotted line). All results are averages over all
frequency bins. As expected, MS cannot track the rapid increases in
noise level. The performance measures for MS are LogErr = 3.84
dB and SSNR+ = 3.01 dB. Our method can handle both fast in-
creases and decreases in noise level, resulting in much better per-
formance figures: LogErr = 1.46 dB and SSNR+ = 4.36 dB.

4.2.2. Other noise sources
Tables 1-2 show the performance measures for our method and
MS, for speech contaminated with stationary white Gaussian noise
(WGN), interior car noise (at 100 km/h), traffic noise, and train sta-
tion noise, at overall SNRs of 0, 5, 10, 15, and 20 dB. The car, traffic,
and train station noises are from the ETSI database [12]. The traffic
and train station noises were the most nonstationary, with passing
vehicles and the arrival of a train. Our method clearly outperforms
the MS method in terms of LogErr and SSNR+. We achieve the
largest improvements for the most nonstationary noise sources.
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Fig. 1. Noise tracking performance of the proposed method and MS
on speech contaminated with highly-nonstationary white Gaussian
noise. The noise level changes at a maximum rate of 10 dB/s.

Table 2. SSNR+ [dB] of enhanced speech for various noise types
and levels, obtained using MS and the proposed method.
SNR Stat. WGN Car interior Traffic Train station
[dB] MS Prop. MS Prop. MS Prop. MS Prop.
0 8.35 7.94 7.86 7.83 5.41 6.67 5.40 6.42
5 6.54 6.60 6.20 6.48 4.12 5.31 4.09 5.04
10 4.92 5.21 4.64 4.94 3.02 3.91 2.90 3.64
15 3.34 3.70 3.22 3.37 1.97 2.63 1.84 2.30
20 1.93 2.25 1.93 2.06 0.89 1.40 0.75 1.21

5. CONCLUSION
Fast and accurate tracking of highly nonstationary noises becomes
feasible with smoothing of MMSE noise power estimates. The re-
cursive nature of the estimation problem is dealt with by means of
an iterative data-driven gain function optimization method.
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