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ABSTRACT 
 
The accuracy of automatic speech recognition in automobiles is 
significantly degraded in very low SNR (Signal to Noise Ratio) 
situations such as “Fan high” or “Window open”. In such cases, 
speech signals are often buried in broadband noise. In this paper, 
we propose a novel approach for such situations that utilizes 
harmonic structures in the human voice. It pursues two objectives. 
(1) Unlike comb filtering, it should not rely on F0 detection or 
voiced/unvoiced detection, since they are not accurate enough in 
noisy environments. (2) It should work with existing noise 
reduction algorithms. In our new approach, an observed power 
spectrum is directly converted into a filter for speech enhancement 
by retaining only the local peaks considered to be harmonic 
structures. In our experiments, we reduced the word error rate 
significantly in realistic automobile environments, and our 
approach showed further improvements when used with existing 
noise reduction algorithms. 
 

Index Terms— Harmonic analysis, Speech enhancement, 
Speech recognition, Noise, Robustness 
 

1. INTRODUCTION 
 
The performance of automatic speech recognition in automobiles is 
affected by various noises. Beamformer [1] technology reduces 
directional noise such as voices from passengers and sounds 
coming from a car radio, TV, or CD player. However, it does not 
have sufficient signal recovery in very low SNR situations with 
ambient noise (such as “Fan high” or “Window open”) unless the 
size of the beamformer is very large. For single channel signal 
processing, existing noise reduction algorithms such as a Wiener 
Filter [2] or Spectral Subtraction (SS) [3] are known to improve 
the accuracy, but improvements are still needed in those situations. 
Therefore, different approaches beyond reducing noise should be 
combined with existing noise reduction algorithms. 

One of the candidate approaches involves enhancements of the 
harmonic structures in human voices. Comb filtering [4] and its 
variants [5] were proposed and showed good performance, 
especially in mixed speech cases. However, they are rarely 
integrated into commercial ASR products, and especially not for 
automobiles. This is because designing a comb filter relies on the 
accurate estimation of F0 (the fundamental frequency) and the 
accurate discrimination between voiced and unvoiced speech. It 
was reported that errors at this stage have detrimental effects on the 
performance [6]. Szymanski et al. proposed Comb Filter 
Decomposition [7] that does not require F0 estimation, but their 
experiment was limited to white Gaussian noise. 

Another candidate would use a matching algorithm to put 
larger weights on frequencies having larger spectral powers as the 
decoder calculates likelihoods [8][9]. This is based on the 
assumption that frequencies having more spectral power are noise 
robust and most likely to be the formant frequencies in voiced 
speech frames. Huang et al. enhanced the logic for the MFCC 
domain [10], but this involved adding autocorrelation into their 
decoding process. 

In this paper, we propose a novel approach for the speech 
enhancement. It uses a filter designed to enhance the harmonic 
structure which is observed as local peaks at regular distances in 
the spectrum domain. It does not depend on F0 or voiced/unvoiced 
detection. Since it works as a front-end for both training and 
decoding, it does not require any changes in existing decoders. 
This new method will be referred to as LPE (Local Peak 
Enhancement) in the following sections. 
 

2. PROPOSED METHOD 
 
2.1. LPE 
 
Fig. 1 shows the whole process of LPE and sample outputs at each 
step for both a voiced frame and a noise frame. The process is the 
same for entire frames, but the generated filter looks very different 
depending on whether or not the frame is voiced speech, as shown 
in the figure. 

In the first step, an observed spectrum ( )jyT  is converted to a 
log power spectrum ( )jYT .  

( ) ( )( )jyjY TT log=           (1) 
Here, the index T is a frame number and j is the bin number of the 
DFT corresponding to the subband frequency. The process 
described in this section should be performed for each T.  

Then the log power spectrum is converted to a cepstrum ( )iCT  
by using ( )jiD , , a DCT (Discrete Cosine Transformation) matrix. 

( ) ( ) ( )jYjiDiC T
j

T � ⋅= ,          (2) 

The cepstra represent the curvatures of the log power spectra. The 
lower cepstra correspond to long oscillations, and the upper cepstra 
correspond to short oscillations. We need only the medium 
oscillations. The range of the cepstra is chosen to cover possible 
harmonic structures in the human voice. Therefore the lower and 
the upper cepstra should be filtered out. 

( ) ( )iCepsiloniC TT ⋅=ˆ   if i < lower_cep or i > upper_cep 
( )iCT=    else         (3) 
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In our experiments, lower_cep=40 and upper_cep=160 for a 16 
KHz sampling frequency with an FFT length of 512 samples. This 
corresponds to an F0 range from 100 Hz to 400 Hz for the human 
voice, with epsilon being close to zero. We set it to 10-3. 

The filtered cepstrum ( )iCT
ˆ  is converted back to a log power 

spectrum by using an I-DCT. 
( ) ( ) ( )iCijDjW T

i
T

ˆ,1
� ⋅= −          (4) 

Then it is converted back to a linear power spectrum, and it is 
normalized so that the average is 1.0. 

( ) ( )( )jWjw TT exp=           (5) 

( ) ( )
( )�

⋅= binNum

k
T

TT

kw

binNumjwjw _
_          (6) 

Here, Num_bin is the number of bins used in the FFT. The filter is 
obtained as ( )jwT . Finally, the enhanced output ( )jzT  is obtained 
as 

( ) ( ) ( )jyjwjz TTT ⋅=           (7) 
In order to reduce the amount of computation, the steps of the 
Equations (2), (3), and (4) can be combined into a single step using 
the pre-calculated matrix A  as follows. 

( ) 0, =Λ ji             if ji ≠  
epsilon=    else if i < lower_cep or i > upper_cep 
1=             else         (8) 

DDA Λ= −1            (9) 
TT AYW =           (10) 

 
2.2. Characteristics of an LPE Filter 
 
As shown in Fig. 1, the filter for LPE is derived directly from the 
observed spectrum. Therefore, F0 estimation is not required. For a 
noise frame or an unvoiced speech frame, it will be designed to be 
almost flat. This means LPE does almost nothing to such frames, 
and therefore, LPE does not require voiced/unvoiced detection.  

For voiced speech frames, the LPE filter is designed to 
enhance the harmonic structures in the observed spectrum. Unlike 
a comb filter, the LPE filter is not uniform over all frequencies. It 
is more focused on the frequencies where harmonic structures are 
observed in the input spectrum. Therefore the acoustic model 
should be retrained with LPE for automatic speech recognition. 

Fig. 2 shows how a spectrum is degraded by a noise. In Fig. 
2(a), the original clean spectrum shows three formants around 600 
Hz, 1200 Hz, and 3500 Hz. However, in Fig. 2(b), they are less 
conspicuous, and the spectrum contour is close to flat. In contrast, 
LPE retains more of the characteristics of the formants, as shown 
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Fig. 1. Process of LPE 

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 (Hz)

(dB)
25dB (Clean)

Envelope

(a) Original sound 

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 (Hz)

(dB)
0dB

Envelope

(b) Fan noise overlapped at SNR 0dB 

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 (Hz)

(dB)
0dB with LPE

Envelope

(c) Fan noise overlapped at SNR 0dB and processed by LPE

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 (Hz)

(dB)
0dB with SS+LPE

Envelope

(d) Fan noise overlapped at SNR 0dB and processed by LPE 
after SS 

Fig. 2. Spectrums of vowel /u/ recorded in a stationary car 
with and without fan noise overlapping at the specified 
SNR. The spectrum envelope is plotted with Mel-Filtering. 
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in Fig. 2(c). The combination of SS and LPE retains even more, as 
shown in Fig. 2(d). An advantage of LPE is that voiced speech 
immersed in heavy noise should be more distinct and 
distinguishable for decoding. 

Harmonic structures are conspicuous around frequencies 
having larger spectral powers in the voiced speech frames, and 
they are most likely to be formant frequencies. Therefore, this 
approach inherently involves formant enhancement as well as 
harmonic enhancement, under the assumption that the noise has a 
broad spectrum and the harmonic structure is not locally destroyed 
by the noise. 

 
3. EXPERIMENTS 

 
CENSREC-3, a common evaluation framework for isolated 
Japanese word recognition in actual automobile environments was 
used in this experiment. This data was collected by IPSJ, and is 
widely used to evaluate noise reduction algorithms [11]. It has 
speech data both for training and testing for automatic speech 
recognition using multi-style trained acoustic models. 

The test data in the database was recorded under 16 
environmental conditions using combinations of three vehicle 
speeds and six kinds of in-car environments as shown in Table 1. 
A total of 14,216 utterances spoken by 18 speakers (8 males and 
10 females) were recorded at a 16 KHz sampling frequency. The 
recognition grammar is a list of 50 words. 

For training, each driver’s speech saying phonetically balanced 
sentences was recorded under two conditions: while idling and 
while driving on a city street in a normal in-car environment. A 
total of 14,050 utterances spoken by 293 drivers (202 males and 91 
females) were recorded with a close-talking microphone and a 
hands-free microphone. 

In this experiment, we used only hands-free microphone data 
for both training and testing. The acoustic models were trained 
with both idling data and driving data for the front-end processing 
being tested. This corresponds to Condition 3 as defined in 
CENSREC-3. The evaluation category is zero, which means no 
changes at the backend using HTK with 39 dimensional features 
(12 mel-cepstrum + log power, with their ∆ and ∆ ∆) without 
subtracting cepstrum mean. 

Comb filtering was introduced as a conventional method to 
compare. It uses F0 estimation and voiced/unvoiced detection. We 
used the “Pitch command” in SPTK-3.0 [12] to obtain this 
information. We used a low-end frequency of 100 Hz and an upper 
frequency limit of 400 Hz, so to be compatible with the LPE 
experiments. The voiced/unvoiced threshold was empirically set to 
7.0, because this gave us better results than the SPTK default value. 

Table 1 shows the resulting word accuracies for various 
environmental conditions. The baseline is the evaluation without 
using any speech enhancement or noise reduction algorithms. 
Table 1 also shows the estimated SNRs of the test data using the 
VAD (Voice Activity Detection) information from the ETSI 
Advanced Front-End (ES202-050) [2]. Note that the accuracy 
of the SNR depends on the VAD information. Table 2 shows the 
estimated SNRs of the training data. We see CENSREC-3 trains an 
acoustic model at relatively better SNRs than for the test data. 
Therefore, speech enhancement and noise reduction are expected 
to help the test performance.  

LPE enhances the local peaks considered to be harmonic 
structures. Therefore, a drawback is expected with LPE when the 
background noise contains music or speech from audio devices 

such as a radio, TV, or CD player, because the filter is designed to 
enhance that audio, too. This is a known restriction of LPE. Comb 
filtering shares this problem, and a multi-pitch tracker was 
proposed to address it [13]. In this paper, we accept this restriction 
and we focus only on the results of the “Audio off” cases. The 
restriction should not matter with current car navigation systems, 
because most of them are designed to disable audio on pushing a 
talk button. Also, we can expect an echo canceller to eliminate 
audio components before processing by LPE.  

For the average “Audio off” case, LPE outperformed the 
baseline by 17.0% in error reduction. Most of the improvement 
was gained in the very noisy conditions of “Fan high” and 
“Window open” conditions with error reductions of 14.8% and 
23.7%, respectively. Comb filtering also improved the accuracy in 
these conditions. However, the improvement was smaller than LPE. 

In relatively clean conditions such as “Normal” or “Fan low” at 
“Idling” or “Low speed”, the accuracy of LPE was almost the same 
or slightly degraded from the baseline. However, the degree of loss 
was small enough for practical use. In contrast, comb-filtering 
shows noticeable degradation in these conditions. As the “Pitch 
command” in SPTK works on a per-frame basis, this result could 
be improved by using a frame-tracking algorithm. 

LPE can be used in combination with existing noise reduction 
algorithms. SS and ETSI ES202-050 were used in our evaluations. 
For the SS processing, the first 0.1 sec. of each utterance was 
assumed to be a non-speech segment where the noise spectrum 
could be estimated. The subtraction weight was set to 1.0, and the 
flooring coefficient was set to 0.1. As shown in Fig. 3, “LPE+SS” 
means LPE pre-processes the input of SS, and “SS+LPE” means 
LPE post-processes the output of SS. Since ETSI ES202-050 splits 
the 16-KHz input into a less-than-8-KHz part and an upper-8-KHz 
part, “ETSI+LPE” applied LPE only to the less-than-8-KHz part of 
the ETSI ES202-050 output. All of the combinations outperformed 
the noise reduction algorithm or LPE alone in the average “Audio 
off” case. The pre-processing case and the post-processing case 
performed almost the same in the “Audio off” cases, but we 
recommend the post-processing combinations, because the 
degradations in the “Audio on” cases were smaller. In this 
evaluation, the best combination was “ETSI+LPE”, which reduced 
the error rate by 69.2% from the baseline in the average “Audio 
off” case. 
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Fig. 3. Combinations of LPE and noise reduction algorithms
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4. CONCLUSION 
 
We proposed a novel approach to speech enhancement to improve 
automatic speech recognition in very noisy conditions. It generates 
a filter to enhance the harmonic structures observed in the input 
spectrum, without relying on F0 estimation and voiced/unvoiced 
detection. Experiments using automatic speech recognition showed 
this method significantly improved the accuracy in very noisy 
conditions such as “Fan high” or “Window open”. We also 
confirmed this method can be a pre-processor or a post-processor 
of existing noise reduction algorithms such as SS and ETSI 
ES202-050 for further improvements. The drawbacks in “Audio 
on” cases were smaller in post-processing cases than in pre-
processing cases. 
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Table 1. Word accuracy and estimated SNRs for various environmental conditions. SNR was calculated 
for the baseline data after a 250 Hz high-pass filtering. 
CENSREC-3

(Condition 3) SNR
(dB)

Base-
line

Comb
Filter LPE SS

LPE +
SS

SS +
LPE ETSI

LPE +
ETSI

ETSI +
LPE

Normal 16.2 99.7 98.8 99.7 99.8 99.6 99.0 100.0 99.8 100.0
Hazard on 15.3 98.7 95.3 96.8 96.8 96.9 96.7 98.1 98.1 98.6
Fan low 11.3 94.6 87.7 94.8 95.2 95.7 95.3 99.2 99.6 99.7
Fan high 6.2 53.4 55.0 60.3 58.1 65.7 67.6 85.3 89.9 88.9
Window open 10.5 90.0 85.4 92.7 90.4 94.1 93.8 97.2 98.2 98.0

Audio on 9.9 81.4 73.2 56.4 74.8 57.0 61.4 89.5 77.7 82.6
Normal 10.9 99.3 96.6 98.7 98.4 97.8 97.5 99.7 98.6 99.7
Fan low 9.7 95.1 91.8 94.7 94.6 94.4 94.2 97.8 97.5 98.7
Fan high 6.7 62.7 66.2 69.1 66.9 71.1 74.3 87.9 89.5 91.5
Window open 9.3 66.2 70.6 74.3 72.4 76.7 78.5 87.0 89.6 88.7

Audio on 6.7 79.0 74.7 61.6 79.5 62.1 62.8 90.8 81.3 87.6
Normal 7.5 95.0 94.3 96.2 97.8 95.3 95.9 98.1 97.2 98.8
Fan low 7.1 89.0 86.7 89.7 91.7 91.9 91.6 96.7 94.8 97.6
Fan high 6.1 58.2 62.1 63.6 61.3 68.3 69.6 88.4 89.1 88.1
Window open 7.2 22.2 35.8 40.4 40.1 44.2 45.4 65.0 69.4 66.7

Audio on 3.9 79.3 69.0 66.6 84.3 67.4 69.1 92.8 84.0 89.7
78.9 77.6 78.4 81.3 79.8 80.7 92.1 90.9 92.1
78.8 78.9 82.4 81.8 84.0 84.6 92.3 93.2 93.5
79.9 72.3 61.5 79.5 62.2 64.4 91.0 81.0 86.6
58.1 61.1 64.3 62.1 68.4 70.5 87.2 89.5 89.5
59.5 63.9 69.1 67.6 71.7 72.6 83.1 85.7 84.5

Word Accuracy (%) Word Accuracy (%)

Average (Fan high)
Average (Window open)

Average (ALL)
Average (Audio off)
Average (Audio on)

High
speed

Audio off

Audio off

Audio off

Idling

Low
speed

 

Table 2. Estimated SNRs of CENSREC-3 training data. 
Training Data SNR (dB)
Idling 21.1
Driving 18.7
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