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ABSTRACT
Recent studies in speaker recognition have shown that score-

level combination of subsystems can yield significant performance
gains over individual subsystems. We explore the use of auxiliary
information to aid the combination procedure. We propose a modi-
fied linear logistic regression procedure that conditions combination
weights on the auxiliary information. A regularization procedure
is used to control the complexity of the extended model. Several
auxiliary features are explored. Results are presented for data from
the 2006 NIST speaker recognition evaluation (SRE). When an es-
timated degree of nonnativeness for the speaker is used as auxiliary
information, the proposed combination results in a 15% relative re-
duction in equal error rate over methods based on standard linear
logistic regression, support vector machines, and neural networks.

Index Terms— Speaker recognition, System combination, Aux-
iliary Information, Nonnative speech, Logistic Regression

1. INTRODUCTION

We consider the task of text-independent speaker verification; i.e.,
given a sample from a speaker and a claimed identity we need to
decide whether the claim is true or false. In the last few years a
common approach to speaker verification has been to use different
knowledge sources by modeling them separately, and then combin-
ing them at the score level. Score-level combination produces a final
score that is later thresholded to obtain a decision. Examples of sys-
tems for which a score-level combination has resulted in significant
gains over the best individual system can be found in [1, 2, 3, 4, 5].
Common combination procedures include neural networks [1, 2],
support vector machines (SVM) [2], linear logistic regression [3],
and weighted summation using empirically determined weights [5].
In our experience, linear combiners tend to outperform or at least
match other types of combiners, and the particular method used to
obtain theweights is not very relevant. Results in Section 4.3 support
this observation.

The combiners mentioned above use only the output of the sub-
systems to perform the combination. By using auxiliary information
about the trials as extra input to the combiner it may be possible to
improve the overall performance. In [6] we proposed a method that
uses auxiliary information from the train and test utterances, such
as the length of utterances, estimated channel type (e.g. cellphone,
carbon, electret), gender of the speaker, and so on, to aid the com-
bination. The auxiliary information for train and test conversations
from each trial was clustered, and separate combiners were trained
for each resulting cluster. Solewicz [7, 8] simultaneously proposed
a very similar method to perform combination using attributes ob-
tained from the utterances. Significant improvements were achieved
by both research teams.

In this paper we propose a system combination method in which
auxiliary information is used to affect the weights of a linear logis-
tic regression (LLR) combiner. This method is similar to that pre-
sented in [6] with the exception that the earlier work used weighted
least squares to train each combiner, whereas the novel approach
presented here uses LLR and a regularization method to control the
complexity of the model. Furthermore, the most useful auxiliary
feature explored here, the nonnativeness score, has never been tried
before.

2. PROPOSED SYSTEM COMBINATIONMETHOD

Consider a training set with M samples, S � f�xi� si� yi�� i �
�� ����Mg, where xi � Rd is the vector of scores from the individual
systems for sample i, si � fl�� � � � � lLg is the auxiliary information
label and yi � f�����g is the class corresponding to the sample (in
the case of speaker verification the classes are impostor and target
speaker). Here, we assume that the auxiliary information is repre-
sented as a categorical value. If the original auxiliary information
corresponds to a vector of continuous random variables, this vector
can be quantized to obtain the labels si.

Our goal is to find a function f�xi� si� such that I�f�xi� si� �
h� is a predictor for the class of the sample, where I�a� is the in-
dicator function (which is 1 if a is true and 0 otherwise), and h is
a tunable threshold. In the linear logistic regression model such a
function is the estimated posterior of the class given the input fea-
tures. We propose a modification to this model that makes use of
auxiliary information to achieve better predictions.

2.1. Standard Linear Logistic Regression
Linear logistic regression assumes the following model for the pos-
terior probability of the class given the input features:

P �yijxi� �
�

� � e�yiw
txi

(1)

where w is a vector of weights that has to be estimated. In order
to simplify notation let vector xi contain an additional component,
xi�� , which is always equal to 1, while xi��� � � � � xi�d are the actual
features: in our case, the outputs of the individual systems that we
wish to combine. This way, the bias term is given by w� and is
included in the scalar product wtxi.

The parameter vector w is usually estimated as the value that
maximizes the log likelihood of the data assuming this model for the
conditional probability, and assuming that samples are independent
and identically distributed. The optimization problem is then given
by

minimize L�w� �
MX

i��

log�� � e
�yiw

txi� (2)
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In this paper, we consider a modified version of this problem,
in which we allow weights to be applied to each term in the sum.
This approach is used to compensate for the priors observed in the
training data if those priors are expected to be different from the
priors that will be found in the test data. The modified LLR problem
is given by

minimize L�w� �
MX

i��

�yi log�� � e�yiw
txi � (3)

with

�yi �

�
P�M

�� if yi � ��
��� P ��M�� if yi � ��

(4)

where P is the prior probability for class y � �� expected in the
test data, andM

�� and M�� are the number of negative and posi-
tive samples found in the training data. The function L�w� is con-
vex since it is a nonnegative weighted sum of convex functions [9].
Hence, the problem has a global optimum.

2.2. Auxiliary Information Conditioned LLR
In order to use the auxiliary information to obtain better combination
performance, we model the posterior probability of the class given
the features xi and the auxiliary information label si, as follows

P �yijxi� si� �
�

� � e
�yi�wt�wt

si
�xi

(5)

wherewsi is a weight vector that depends on the observed auxiliary
information for sample i (recall that we are assuming that si is a
categorical feature). Using the same assumptions as above we obtain
a modified objective function

L�w�wl�� � � � � wlL� �
MX
i��

�yi log�� � e
�yi�w

t�wt
si
�xi � (6)

where l�� � � � � lL are the values si can take.
The new problem containsL additional weight vectors that need

to be estimated. The obvious risk is that this could lead to overfitting
of the training data. To address this potential problem, we introduce
a regularization term in the objective function that aims to control the
size (measured by the square norm) of the new weight vectors. It ef-
fectively shrinks the overall weight vectorw�wsi toward the global
weight w. (Note that this is why we kept w in Equation (5), instead
of simply replacing it by the new auxiliary information-dependent
weights.)

Furthermore, we introduce a constraint on the sign of the over-
all weights applied to each feature (except for the bias term). We
force them to be positive, thereby forcing the combination function
to be monotonically increasing on the inputs. This is a reasonable as-
sumption that could result in a more robust estimation of the weights
when limited data is available for training.

The resulting optimization problem is given by

minimize
MX
i��

�yi log�� � e
�yi�w

t�wt
si
�xi � �

LX
j��

�jw
t
lj
wlj

subject to wk �wlj �k � �� j � �� � � � L�k � �� � � � d

(7)

The value for �j is set to ����Mj�M�, whereMj is the num-
ber of samples with auxiliary information given by slj and � is a
tunable parameter. That is, we penalize the growth of the norm of

a weight vector depending on the number of samples available with
the corresponding auxiliary information label.

We implemented a logarithmic barrier interior-point method to
solve problem (7). This involves using Newton’s method to solve a
sequence of unconstrained problems that successively approximate
the problem we want to solve. To create this sequence of problems,
we augment the problem objective with a sum of logarithmic penal-
ties. It can be shown that the complexity of this algorithm is polyno-
mial in the problem’s dimensions. For more on interior-point meth-
ods see [9, Chap. 11].

3. AUXILIARY INFORMATION

To test the proposed method we explore three types of auxiliary
information that reflect characteristics of the signal, or the speaker
found in the signal, and that we believed could be sucessfully used
to condition the combiner parameters.
Number of phones: The purpose of this feature is to give an in-
dication of the amount of useful information in the waveform. The
output of an automatic speech recognizer (ASR) is used to obtain the
total number of phones found in the waveform.
Rover posteriors: The posteriors generated by the rover step in
ASR provide an indication of the confidence with which each word
was recognized. We compute the geometric average of the word-
level posteriors for each segment used by the recognizer and then
average those values over all segments to obtain a single posterior
for the unsegmented waveform.
Nonnativeness score: Nonnativeness scores are obtained automati-
cally from the waveform as described in [10]. The system is trained
using data from the Fisher corpus. Samples are labeled as belong-
ing to either a native or a nonnative English speaker using 8-class
MLLR features produced by an ASR system [11]. An SVM sys-
tem is trained to classify samples into those two classes. The signed
distance to the hyperplane is used as the score.

These three features are continuous measurements computed
over waveforms, while the samples we refer to in Section 2 corre-
spond to speaker verification trials, not waveforms. In the next sec-
tion we will see how these values are transformed into the discrete
per-trial features used to implement the method introduced above.

4. EXPERIMENTS

Experiments were conducted using data from the NIST speaker
recognition evaluations (SRE) from 2004 and 2006. Data from
the 2005 SRE were not used, because the distribution of nonnative
speakers in that data is poorly matched to that in the 2006 data.

Each speaker verification trial consists of a test sample and a
speaker model. The samples are one side of a telephone conversa-
tion with approximately 2.5 minutes of speech per side. We consider
the 1-side training condition in which we are given a single conver-
sation side to train the speakermodel. This conversation corresponds
to a single positive example when training the SVM model for the
speaker. The negative examples are extracted from the Switchboard
and Fisher databases.

The SRE04 and SRE06 1-side training condition tasks contain
15,317 and 24,013 samples, respectively. We report results in terms
of both equal error rate (EER) and NIST’s detection cost function
(DCF). The DCF is defined as the Bayesian risk with the prior prob-
ability of the target equal to 0.01, the cost of a false alarm equal to
1, and the cost of a miss equal to 10. This is equivalent to having
the target-to-impostor prior probability ratio be 1/10 and the costs of
false alarms and misses be 1.
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4.1. Individual systems
Below is a description of the systems included in the combination.
The performance on SRE06 data is reported in parenthesis (10*DCF
/ EER%). For lack of spacewe do not list references for every system
here. Please refer to [2] for such a list.
Cepstral GMM system: (0.276/6.15) This is a conventional cep-
stral Gaussianmixture model system adapted from a universal back-
ground model, using a 2048-component GMM.
Cepstral SVM system: (0.242/5.07) This system usesmultiple pro-
jections of PCA-transformations of mean polynomial vectors of cep-
stral features. These features are modeled using SVMs, generating
four separate scores that are combined with equal weight to produce
the final score.
MLLR transform SVM system: (0.213/4.64) The features used by
this system are the components of the maximum likelihood linear
regression (MLLR) transforms used for speaker adaptation in SRI’s
speech recognition system. The transform coefficients are modeled
by SVMs.
Word N-gram SVM system: (0.815/23.46) This system uses an
SVM with a linear kernel with first-, second-, and third-order word
N-gram frequencies as features.
SNERF system: (0.536/12.57) This system uses a set of prosodic
features extracted from automatically estimated syllables. The mod-
eling is done by SVMs. The system used here (as described in [12],
but without intersession variability compensation) is an improve-
ment over the one described in [2].
Duration systems: In this system, two sets of duration features,
state- (0.705/16.02) and word-level (0.874/22.22), are modeled by
GMMs.

4.2. Representing the auxiliary information
As explained in Section 3 all auxiliary features used in this paper are
originally continuous values for each waveform. Our first job is to
discretize these features. As explained below, this can be done by
either using a clustering algorithm, or simply quantizing them into
predetermined bins. The next step is to turn these waveform-level
features into trial-level features. Each trial consists of a target model,
in our case trained with a single waveform, and a test waveform. We
transform the waveform-level auxiliary information into trial-level
information simply by concatenating the labels corresponding to the
train and the test waveforms. The resulting label is used as si in (5).

4.3. Results
Table 1 shows results on SRE04 and on SRE06 for several combina-
tion procedures. Results on SRE04 are obtained by cross-validation
(training on half the data and testing on the remaining half and
reversing the halves). The results are computed on the complete
database after merging the results from the two halves. All parame-
ters are tuned using this method. Results on SRE06 correspond to a
combiner trained on all of SRE04. In this case, the actual DCF value
is shown, in addition to the minimum DCF. The minimum DCF is
the DCF value corresponding to the threshold that minimizes it on
the test data, while the actual DCF is the DCF value obtained using
the best threshold for the development data (in this case, SRE04).

The first block of results corresponds to system combination per-
formed using only the available scores, without any auxiliary infor-
mation. Several standard combination methods were explored: a
single-layer neural network (NN), support vector machines with a
linear or a radial basis function (RBF) kernel, weighted least squares
(WLS), and linear logistic regression (LLR). In the case of the NN,

several parameter settings were tried, with different numbers of lay-
ers and different numbers of internal nodes. For the SVM, poly-
nomial kernels with different parameters were also tested. These
results are not shown since they resulted in worse performance than
those in the table. In the case of WLS, the weights are chosen such
that the overall weight given to the positive samples divided by that
given to the negative samples equals 1/10 (this is a common proce-
dure to optimize the DCF value). Similarly, P � ���� (such that
�� � P ��P � ����) is used in Equation (4). Results show that all
these procedures give very similar performance. WLS leads to a sig-
nificantly better EER value, but its actual DCF is worse than that of
the SVM and LLR methods.

The next three blocks of results correspond to combiners that
use the three different types of auxiliary information. For each type
we present results using the method introduced in [6], here called
auxiliary information conditioned (AIC) WLS, where separate com-
biners are trained for each value of the auxiliary information using
WLS. In this method, auxiliary information at the waveform level is
first clustered into two clusters, and a Gaussian model for each clus-
ter is used to obtain the posterior probabilities of each cluster given
a waveform. Then, for each trial, the probability of each possible
combination of train and test clusters is computed as the product
of the probabilities of the individual clusters. All samples are then
used to train all combiners, weighting each sample by those prob-
abilities. The second line in each block corresponds to the method
presented in this paper, the auxiliary information conditioned (AIC)
LLR, using the optimal parameter settings on SRE04 data. The first
parameter is t, a threshold used to discretize the auxiliary informa-
tion into two bins. Instead of learning the clusters based on data, as
in the previous method, here we find the best value for the thresh-
old empirically using SRE04 data. This has the advantage of finding
bins that are optimal for the combination task, but the disadvantage
of having to make hard decisions about the value of the auxiliary
information label rather than using probabilities. As we explain be-
low, these differences are not inherent to the methods. The second
parameter is the � value used for regularization. The effect of this
parameter is more noticeable when few samples are available for a
particular value of the auxiliary feature, since in that case the param-
eter prevents overfitting of the weights corresponding to that value.
Furthermore, larger values of � generally lead to better estimation
of the actual DCF. The third parameter, pc, indicates whether or not
we are imposing the positivity constraint on the weights. In our ex-
periments, the unconstrained weights were already positive in most
cases, except when little data was available for a particular value of
the auxiliary information. In these cases, the positivity constraint
usually resulted in a more robust estimation of the parameters, al-
though differences in performance were always small. The third pa-
rameter, rb, indicates whether the bias term is regularized along with
the other weights. In some cases, not regularizing the bias terms that
depend on the auxiliary information results in better performance.

In general we see that even though both combination methods
that consider auxiliary information lead to similar performance, the
new method seems to be more robust at estimating the optimal score
threshold for the DCF, resulting in better actual DCF values. The
performance improvement obtained with either of the two meth-
ods using the nonnativeness scores as auxiliary information is large,
between 15% and 20% (depending on which baseline we compare
against, the WLS or the LLR), 15% for minimum DCF and between
13% and 20% in actual DCF. These gains are highly significant, with
p-values much smaller than 1% in all cases. In the case of the other
two auxiliary features the gains are much smaller and generally not
statistically significant.
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SRE04 SRE06
Auxiliary feature Combination method

EER MinDCF EER MinDCF ActDCF

None

NN, no hidden layer 4.42 0.205 3.88 0.175 0.203
SVM, linear 4.29 0.190 3.99 0.175 0.181
SVM, RBF, � � ����� 4.29 0.190 3.99 0.175 0.180
WLS 4.29 0.198 3.67 0.173 0.209
LLR 4.35 0.190 3.88 0.173 0.180

Number of phones AIC WLS 4.15 0.188 3.45 0.170 0.187
AIC LLR, t=450, �=20, pc=1, rb=1 3.93 0.189 3.78 0.172 0.180

Rover posteriors AIC WLS 4.29 0.198 3.67 0.173 0.192
AIC LLR, t=0.92, �=200, pc=1, rb=0 4.08 0.188 3.67 0.164 0.175

Nonnativeness Score AIC WLS 3.79 0.161 3.13 0.146 0.168
AIC LLR, t=-0.6, �=100, pc=0, rb=0 3.58 0.155 3.13 0.146 0.156

Table 1. Results on SRE04 with the combiner trained on SRE04 using a cross-validation procedure, and on SRE06 with the combiner trained
on all of SRE04, for several different combination procedures. The best results in each block for each performance measure are highlighted
in bold. t: threshold used to quantize auxiliary information, pc: positivity constraint applied, rb: regularize the bias term.

Other auxiliary features we experimented with were gender (au-
tomatically estimated from the signal) and the ratio of voiced frames
to all speech frames. These did not lead to performance improve-
ments. Many other auxiliary features can be considered. In [6] we
showed significant gains when the MLLR features for each sample
were used to cluster the trials. These features turned out to be useful
only when that particular MLLR system was used. When other sys-
tems are considered for combination (changing that MLLR system
for an improved one [11]), the gain vanishes.

Finally, we point out that the two auxiliary information-
conditioned methods presented here can be more directly compared
by performing some modifications. The WLS method can be mod-
ified so that each combiner is trained using only the samples corre-
sponding to each value of the auxiliary features, as is done for the
modified LLR method. If the clustering procedure is skipped and
the discretization is performed as in the method proposed here, the
only differences between the two methods are the models used to
train each combiner and the regularization used in the LLR method.
When this is done, results for the two methods are quite similar, al-
though again, the LLR method generally leads to better actual DCF
values. Furthermore, we could modify the LLR method to use all
samples to train all weight vectors instead of choosing a single value
of the auxiliary feature for each sample. This can be done by rewrit-
ing (5) as P �yijxi� �

P
l
P �yijxi� si�P �si�, where we consider si

to be unknown, and consider the auxiliary information to be inde-
pendent of the features. This is a direction that we plan to explore in
the future.

5. CONCLUSIONS
We have proposed a modified linear logistic regression combination
procedure that conditions weights on auxiliary information and that
includes a regularization procedure to control the complexity of the
extended model. On SRE06 data, the proposed combination results
in a 15% relative reduction in equal error rate over methods based
on standard linear logistic regression, support vector machines, and
neural networks, when nonnativeness estimates are used as auxiliary
features. We found similar gains using this auxiliary feature with our
previously proposed class-dependent weighted least squares com-
biner. We explored several other, much simpler, auxiliary features,
but did not obtain statistically significant gains. We expect that more
complex auxiliary information (e.g. estimates of languageor dialect,
or speaking style) could yield gains in relevant applications.
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