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ABSTRACT

Acoustic model enhancement (AME) refers to adapting the acoustic
models to compensate for the distortion induced by a speech en-
hancement technique. This work extends the AME technique for
speaker verification recently presented by incorporating the corre-
sponding adaptation of the model variances, and by exploring the
trade off between noise over-estimation and flooring distortion in
the verification error.

By using spectral subtraction (SS) as the speech enhancement
technique, the extended AME highly outperformed SS alone partic-
ularly at moderately low SNRs (0dB-15dB), where the adaptation of
the variance was found to considerably improve the equal error rate
(EER).

Index Terms— Speaker verification, robustness, minimum ver-
ification error, additive noise, spectral subtraction, acoustic model
enhancement.

1. INTRODUCTION

Speaker Verification (SV) is the task of accepting legitimate reg-
istered users and rejecting impostors from a voice segment and a
claimed identity. Depending on the underlying assumptions in an
application, SV systems can be designed to adopt a desired func-
tionality. For example, text-independent SV can be used for auto-
matic undisclosed monitoring of conversations. The inputs of this
SV system are a speech sequence and a claimed identity, producing
an output that either accepts or rejects the claim along with a confi-
dence score. If the input speech sequence length is assumed infinite
(or very long), a decision from SV could be drawn when a desired
confidence level has been reached or when a decision is requested
(decide-now button). In this work, we study such conventional text-
independent SV system.

There are two sessions in SV: enrollment and verification. In
enrollment, the user being registered provides several segments of
speech, also called positive tokens. The verification session consists
of a series of verification trials which can be identified either as tar-
get or impostor depending on the actual legitimacy of the claim.

Although there has been significant progress in SV, in part driven
by the evaluation organized by NIST [1], SV remains an interesting
topic of research. The acoustic mismatch between the enrollment
and verification sessions rapidly degrades the performance. Robust-
ness methods are indeed needed to enable SV systems be widely
adopted in real applications. Among the main sources of acoustic
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mismatch the most widely used are convolutive noise (channel dis-
tortion) widely studied in [1], coding distortion [2], and additive am-
bient noise[3]. This work addresses this last case, not only found in
outdoor environment but also in indoor places where air-condition
and computer fans are operated.

Mitigating the acoustic mismatch between training and testing
is the fundamental problem of robustness. In the presence of addi-
tive noise, one can either clean the noisy speech (speech enhance-
ment) [3] [4], or modify the acoustic models originally trained with
clean data to match the noise condition (model adaptation) [5]. Other
methods make the features match the noise conditions (feature-based
adaptation) such as SPLICE (State Based Piecewise Linear Compen-
sation for Enviroments) [6], MEMLIN (Phoneme-Dependent Multi-
Enviroment Enhanced Models Based LInear Normalization) [7].

Acoustic model enhancement (AME) is the adaptation of the
acoustic models to compensate for the distortion induced by a
speech enhancement technique. In this work the AME technique
for speaker verification recently presented in [8] is extended by
exploring the adaptation of the model variances. Moreover, several
experiments were performed to anlyse the trade-off between noise
under-subtraction and spectral flooring.

First the Section 2 introduces the principles of SV and explains
the methodology for AME, then Section 3 explores a set of exper-
iments that test the efficacy of AME. Finally, conclusions are pre-
sented in Section 4.

2. METHODOLOGY

2.1. SV framework

The decision of acceptance/rejection for a given trial is drawn from a
hypothesis test, where the null hypothesisH0 is to accept the speaker
as legitimate and the alternative hypothesis H1 is to reject it. This
hard decision is based on the log-likelihood ratio test:

θ = ln
P (H0)

P (H1)
; θ

accept
≥
<

reject

τ. (1)

The acoustic modeling for the i-th speaker consists of two parts:
a target model λi−tgt that captures the intrinsic characteristics of
the speaker, and a corresponding anti-model λi−anti that provides
a contrast of this speaker against impostors. The anti-model can be
defined under two schemes: as a cohort (a set of GMMs: C) or as a
background model (a single-GMM), depending on the chosen scope
of contrast.
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During the speaker enrollment session, a set of positive tokens
are collected from the speaker being registered. Another set of neg-
ative tokens can be collected beforehand from a pool of speakers,
which ideally represents the population of impostor speakers.

2.1.1. Maximum likelihood

Acoustic modeling under the maximum likelihood estimation
(MLE) criterion fits the observed data O to a probability density
function (PDF), a GMM in this case, by using the expectation max-
imization (EM) algorithm that iteratively finds a model λ such that
(n denotes the iteration number):

P (O|λ(n+1)) ≥ P (O|λ(n)). (2)

The positive tokens are used to fit the target model and the nega-
tive ones to fit the anti-model. Traditionally, the anti-model is shared
by all speakers as a universal background model (UBM).

Since the availability of positive tokens is limited, the target
models is built by first using negative tokens from a large pool of
speakers to create a speaker-independent flat-start model, then per-
forming maximum a posteriori (MAP) speaker adaptation [9]:

θMAP = argmax
λ,ϑ

P (O|λ; ϑ)P (λ;ϑ) (3)

where θ = (λ,ϑ) and ϑ is the meta-parameter of the distribution of
λ. Equation 3 is also solved using the EM algorithm.

2.2. Acoustic model enhancement

When the testing and trainning occur in different acoustic conditions,
the SV system accuracy degrades. Mitigating this mismatch is the
main problem of robustness. In the presence of additive noise, one
can either utilize speech enhancement [3] or model adaptation [5].
Since the noise or distortion can never be totally removed by en-
hancement algorithms, the strategy of AME is to obtain the best of
both techniques.

The goal of AME is to mimic in the clean acoustic models (for
H0 andH1) the distortion that results from the speech enhancement,
therefore inducing a matched condition with the enhanced test data.

For models trained under the MLE criterion, AME attempts to
find a transformation of the clean models (PDFs) to a new one where
the enhanced speech fits, therefore preserving the maximum likeli-
hood.

In this work spectral subtraction (SS) [3], as defined in Equa-
tion 4 and depicted in Figure 4, is used as the speech enhancement
technique:

YD = max(Y − αN̂, βY) (4)

whereY is the observed spectrum of noisy signal, (N̂) is an estimate
of the noise spectrum and YD is the corresponding spectrum of the
enhanced (spectral subtracted) signal.

In practice, the phase of YD is set to the phase of Y, and only
the magnitude spectra is considered in Equation 4. The parameters
α and β adjust the gain of the subtraction and the flooring level,
respectively. These values depend on the noise estimate and are to be
determined empirically from a development set. In general, β � α.

In order for AME to adapt the clean MLE speaker models, the
statistics of the enhanced speech (YD) need to be found as a function
of the SS used. Since the predominant model for text-independent
speaker verification is the mixture of Gaussians, and the acoustic
features are based on MFCCs (Mel-frequency cepstral coefficients),

αN̂

YD

Y − αN̂

βY

Y

Fig. 1. The solid line shows the non-linear characteristic for SS. The
flooring level of YD is proportional to the observed noisy signal Y.

such a case will be illustrated. Nevertheless, similar procedures can
be devised for other types of spectral-based features or HMM-based
models.

First, let us consider λ = (c, μ, Σ), a GMM trained with clean
speech and PDF:

fχ(x) =
X

k

ck N (x; μk, Σk),
X

k

ck = 1, (5)

where χ is the feature vector in cepstral domain. The covariance
matrixΣk is often simplified as a diagonal matrix. Then, this model
can be easily transformed to log-spectral domain by taking the in-
verse discrete cosine transform, obtainingX

� with the PDF:

fX� (x) =
X

k

ck N (x;μ�
k,Σ�

k), (6)

μ�
k = C

−1μk, Σ
�
k = C

−1
Σk(C−1)T . (7)

Our notation can be reduced if we consider only the k-th Gaus-
sian mixture component. Additionally, by approximatingΣ

�
k to be a

diagonal matrix, a single dimension inX
� can be considered: X� (a

Mel-frequency channel).
The log-spectrum (X�) can be transformed to magnitude spec-

trum (X), which has a log-normal distribution with:

E(X) = eμ�+(σ�)2/2, E(X2) = e2μ�+2(σ�)2 . (8)

From Equation 4, it can be found that the first and second mo-
ments ofYD, for a single dimension (YD), are:

E(YD) = E(Y ) − αN̂
h
1 − F

(0)
Y (a)

i

+ (β − 1) F
(1)
Y (a), (9)

and

E(Y 2
D) = E(Y 2) + α2N̂2

h
1 − F

(0)
Y (a)

i

+ 2αN̂
h
F

(1)
Y (a) − E(Y )

i

+
`
β2 − 1

´
F

(2)
Y (a), (10)

where a = αN̂/(1 − β), and

F
(0)
Y (a) =

Z a

−∞

fY (y)dy, (11)

F
(1)
Y (a) =

Z a

−∞

yfY (y)dy, (12)

F
(2)
Y (a) =

Z a

−∞

y2fY (y)dy. (13)
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We can use the approximations:

E(Y ) ≈ E(X) + N̂, (14)

E(Y 2) ≈ E(X2) + 2N̂E(X) + N̂2, (15)
fY (y) ∼ log normal, (16)

to finally obtainE(YD) andE(Y 2
D) from Equations 9 and 10. Equa-

tion 16 allows the transformation of the adapted distribution back to
log-spectrum (Y �

D) with mean and variance:

μ�
D = 2 lnE(YD) − 0.5 lnE(Y 2

D), (17)

(σ�
D)2 = ln E(Y 2

D) − 2 ln E(YD). (18)

The resulting adaptation in cepstrum domain for the means and
variance is:

μ → μD = Cμ�
D, (19)

Σ → ΣD = CΣ
�
DC

T . (20)

This adaptation is done for every mixture component, and every
speaker’s target and anti model, and is named AME2 since it is an
extension of AME1 (only mean adaptation).

In the case when α = 0 (no SS), it is clear from Equations 9 and
10 that the distribution of YD becomes the estimated distribution of
Y (conventional model adaptation). If α = ∞, the distribution of
YD becomes the distribution of βY .

3. EXPERIMENTS

3.1. Data set

The experiments were conducted using a modified version of TIMIT:
SV-TIMIT. By itself, TIMIT is not recommended for exploring new
techniques in speaker recognition because of its unrealistic acoustic
conditions, and the lack of intra-speaker variability that results in a
nearly perfect performance. Nevertheless, this data set can still be
useful for isolating the effect of a particular phenomenon [10], as
it is the case of additive noise. Moreover, the public availability of
TIMIT allows the results to be reproducible.

SV-TIMIT was assembled as follows. The SV task was split into
two independent ones: male and female, resulting in 326 male and
136 female enrolled speakers obtained from the entire training set
of TIMIT. This gender split does not entail a simplification because
gender attributes can be assumed to be part of the enrollment data
and cross-gender trials are easy to detect as impostors. Discarding
the ’sa’ utterances (sentences intended to show dialectial variants)
to avoid acoustic bias, each registered speaker has 8 enrollment ut-
terances from which two are randomly selected and sent to the ver-
ification set to induce their target trials. Since the speakers set that
conforms the testing part of TIMIT are not present in the training set,
they were used as impostors. In SV-TIMIT, a ratio of 4:1 impostor-
to-target trials was used. On average, each utterance is about 2.5
seconds of active speech, therefore the enrollment consists of around
15 seconds, and the decision for each verification trial is drawn from
only 2.5 seconds of speech. Earlier experiments with TIMIT [11]
explored a different configuration of the data, using only the test set
(168 speakers) and including ’sa’ utterances, for enrollment and ver-
ification.

For the first set of experiments the white noise was synthetically
produced. The spectral subtraction and AME were performed us-
ing the noise estimate N̂, which was fixed to the mean value across
the utterance of the actual noise added. Although a frame by frame

estimate is more accurate than a fixed one, this value of N̂ sets a
reference that is easy to reproduce.

For the second set of experiments, each of the noise added was
extrated from NOISEX database [12], and the noise estimate N̂ was
computed using the average of 2 seconds of noise. The types of noise
employed were: white noise, pink noise, tank noise (Leopard) and
fighter jets (F16). Each type of noise was added for SNRs from 0 dB
to 25 dB to the speech waveforms. Spectral subtraction and AME2

were performed using the noise estimate N̂.

3.2. Results

Several approximations were used in the formulation of AME (Equa-
tion 14-16). This section experimentally tests the performance of the
proposed technique.

Female
SNR no-Enh SS AME1 AME2

clean .76 - - -
25dB 8.1 4.0 4.0 4.7
20dB 14.7 8.4 7.3 8.8
15dB 26.1 16.2 15.8 12.8
10dB 37.5 31.6 29.4 24.3
5dB 47.9 41.6 40.1 36.4
0dB 48.5 45.2 44.5 43.0

Male
SNR no-Enh SS AME1 AME2

clean .61 - - -
25dB 8.0 2.3 2.1 4.2
20dB 16.0 5.1 4.4 6.4
15dB 27.7 14.0 12.6 11.6
10dB 38.5 30.4 29.3 22.7
5dB 46.5 42.2 40.8 35.0
0dB 49.2 47.4 47.0 44.6

Table 1. Equal error rates (EER) in % for different SNRs in dB and
speaker models trained under maximum likelihood (MLE). No-Enh
shows the results when neither the verification speech nor the models
were enhanced, in SS only the speech was enhanced, and in AME
both the speech and the models were enhanced, where AME1 adapts
the means only and AME2 adapts the means and the variance.

The results for white noise synthetically produced are shown in
Table 1. In this experiment, β was set to 0.1 and α = 1. First,
we can observe that Speech enhancement (SS) successfully removes
part of the noise at the cost of a non-linear distortion, achieving an
improvement in EER, specially for medium-high SNRs.

The early version of AME (presented as AME1), where only the
means are adapted (for each target and anti models), shows a con-
sistent moderate improvement w.r.t SS alone for all SNRs. The ex-
tension of AME, proposed in Section 2 (shown as AME2), consider-
ably outperforms SS alone for medium-low SNRs, but not for higher
SNRs where AME1 does. Moreover, AME2 outperforms AME1 for
low SNR.

Based on this results, the next set of experiments explore the
performance of AME2 against noisy speech signal, SS and AME1.
The NOISEX database was employed for this task. A comparison
table for male and female speakers and for different types of noises
is depicted in Table 2.

In general, results for male and female share a consistent trend.
The no-Enh column demonstrates how EER is degraded even for a
high SNR. The SS column shows the results for enhanced speech.
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Male
Noise white pink tank (Leopard) jets(F16)
SNR No SS AME1 AME2 No SS AME1 AME2 No SS AME1 AME2 No SS AME1 AME2

Enh Enh Enh Enh
clean 0.6
25dB 28.5 16.0 16.2 9.0 1.7 13.7 12.9 9.0 9.2 2.5 3.83 5.1 14.4 12.4 11.96 9.7
20dB 37.3 25.1 27.4 11.2 4.1 22.7 22.5 11.2 9.7 5.9 7.1 6.9 20.3 22.6 20.3 11.8
15dB 44.2 29.5 40.3 15.4 12.9 30.7 33.2 13.8 11.0 11.4 11.0 8.9 27.9 32.1 28.9 14.1
10dB 47.4 34.4 47.8 21.3 25.2 34.9 43.6 17.8 12.8 20.1 17.0 11.3 38.0 38.5 36.9 17.3
5dB 49.2 42.5 49.5 29.1 39.1 38.8 48.3 24.1 16.3 28.5 22.2 12.9 45.1 40.8 44.3 21.2
0dB 49.7 46.3 49.5 37.2 46.6 42.9 48.7 28.5 21.8 36.0 26.8 14.1 48.0 43.2 48.4 24.1

Female
Noise white pink tank (Leopard) jets(F16)
SNR No SS AME1 AME2 No SS AME1 AME2 No SS AME1 AME2 No SS AME1 AME2

Enh Enh Enh Enh
clean 0.7
25dB 27.5 11.0 14.3 11.4 2.5 10.3 10.6 8.9 14.9 4.3 4.7 7.0 18.3 9.5 10.3 10.3
20dB 34.9 18.0 23.8 13.6 5.2 13.9 16.1 11.0 17.2 6.2 6.6 8.7 21.3 15.8 13.6 10.6
15dB 43.0 23.9 37.4 16.9 13.2 20.2 24.9 13.6 19.2 10.6 8.8 11.0 29.3 22.4 21.3 12.8
10dB 47.4 27.6 44.8 20.9 28.3 27.6 37.7 18.7 22.7 17.3 12.5 12.5 41.2 29.3 32.2 15.3
5dB 48.1 34.9 48.8 26.1 41.5 36.3 47.7 23.8 26.8 23.4 16.1 14.3 45.8 36.8 41.9 18.7
0dB 49.6 43.3 50.3 33.0 48.2 42.7 50 28.3 31.9 31.6 20.9 14.3 48.4 42.2 47.1 26.4

Table 2. Equal error rates (EER) in % for different SNRs in dB and speaker models trained under maximum likelihood (MLE). No-Enh
shows the results when neither the verification speech nor the models were enhanced, in SS only the speech was enhanced, and in AME2 both
the speech and the models were enhanced. The best (lowest) EER values were selected employing α = 1 to α = 2.5 and β = 0.1.

The AME1 and AME2 columns depict the best (lowest) EER per-
centage value obtained for different values of α (1 to 2.5). The
choice of α allows to balance the distortion induced from noise under
subtraction and a non linear distortion that results from the spectral
flooring. Table 2 shows how the performance of AME2 can dramat-
ically improve when an appropriate value of α is selected. For ex-
ample, for jet noise at 0 dB, the EER drops from 48.47% to 26.47%
for female speakers. However, AME1 does not show a consistent
improvement, when compared to both, No-Enh and SS columns.

4. CONCLUSIONS

In this work, we extended the AME technique for speaker verifi-
cation by incorporating the corresponding adaptation of the model
variances. Using spectral subtraction (SS) as the speech enhance-
ment technique, the extended AME highly outperformed SS alone
particularly at moderately low and low SNRs (5dB-15dB) for syn-
thetic white noise, where the adaptation of the variance was found
to considerably improve the equal error rate (EER). However, it also
degrades at high SNRs (> 20 dB) compared to means adaptation
only. For real noise condition, AME 2 outperforms SS and AME1

for SNRs less than 20dB. These results encourge us to work on a bet-
ter variance approximation. Since the goal of this work was to show
the efectiveness of the extended-AME technique to compensate the
noise, then Lombard effect was not taken into account. As a future
work, we are planning to use this technique with a large vocabulary
automatic speech recognition task.
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