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ABSTRACT

Missing data techniques have been recently applied to speaker recog-
nition to increase performance in noisy environments. The drawback
of these techniques is the vulnerability of the recognizer to errors in
the classification of time-frequency points as corrupt or reliable. In
this paper we propose the combination of missing data processing
and feature selection to reduce these errors. The formation of a set
of speaker discriminative features allows time-frequency reliability
masks to be refined via the removal of the non-discriminative fre-
quency sub-bands. The reduced set is selected dynamically using
multi-condition training and an estimate of the global SNR allowing
for efficient top-down processing. Experimental results show that
the combined technique achieves significant improvement over tra-
ditional bottom-up processing thus demonstrating the validity of the
approach.

Index Terms— speaker identification, robustness, feature selec-
tion, missing data

1. INTRODUCTION

Speaker recognition is an important problem in modern communica-
tions with applications to security and access control as well as per-
sonalization. In practice speaker recognition is adversely affected
by the presence of noise and acoustic variabilities in the speech to
be processed. Missing data processing is an effective technique for
compensating against arbitrary disturbances within a speech signal.
These approaches rely on the construction of a time-frequency (TF)
mask to label each TF point as either speech or noise dominant. Past
research [1, 2] has demonstrated, in the context of speech recogni-
tion, that missing data methods can provide extremely high robust-
ness if a perfectly constructed TF mask is available. Based on this
observation research has largely concentrated on the accurate esti-
mation of the TF reliability mask. However, producing the ideal
TF mask under practical non-stationary noises remains an extremely
difficult task. Techniques used to estimate the ideal mask produce
two types of errors: the inclusion of unreliable points and the ex-
clusion of reliable points. The weakness of traditional approaches
to missing data is that the recognizer has no protection from these
errors, particularly where true unreliable components are assigned a
high reliability.

To solve this problem recent research has introduced the idea of
combining bottom-up (BU) methods such as auditory scene analysis
with top-down (TD) methods which utilize trained acoustic mod-
els. Examples specific to speech recognition include the multisource
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decoder [3], and the two-stage speech separation hypothesis testing
approach [4]. Top-down processing is utilized for speaker recogni-
tion in the universal compensation technique [5], where a search is
performed over the feature space of each model within a set of noise
corrupted models to find components that best match the input spec-
trum. Although this gives the best possible subset for recognition,
the required exhaustive search over the feature space can be compu-
tational for high feature dimensions.

In this paper we propose a novel combination of bottom-up miss-
ing data processing and top-down feature selection to achieve effi-
cient robust speaker identification. This technique is based on the
uneven distribution of speaker specific information in the frequency
domain, allowing the removal of non-discriminative frequency sub-
bands and the formation of a reduced feature set. Multi-condition
training is used as in [5] to dynamically select the most discrimi-
native features for a set of speakers given an estimate of the global
signal-to-noise ratio (SNR) of the evaluation environment. This sub-
set is applied to the missing data mask resulting in the removal of un-
reliable inclusion errors in non-discriminative sub-bands. This tech-
nique calculates the discriminative ability of each feature based on
the trained speaker models, and thus can perform efficient top-down
processing independent of the feature dimension. Experimental eval-
uation was conducted by comparing the performance of the com-
bined missing data feature selection approach to standard bottom-up
methods for speech corrupted by stationary and non-stationary addi-
tive noises. The results show that our combined approach performs
significantly better than these bottom-up only methods.

The remainder of this paper is organized as follows. Section 2
describes the proposed system including the feature selection theory
and its integration with missing data processing. The evaluation of
the system is presented in Section 3. Conclusions and future work
are discussed in Section 4.

2. SYSTEM OVERVIEW

This work proposes a new technique to perform speaker recognition
in arbitrary noise based on the novel combination of missing data
speech processing with model based feature selection. Missing data
processing is firstly applied to the input speech producing a binary
TF mask which captures the effect of noise corruption. Using the
trained speaker models a subset of speaker discriminative features is
defined dynamically based on the approximate noise conditions of
the test environment. By using this subset to refine the reliability
mask, unreliable inclusion errors within the non-discriminative fre-
quency bands are removed, and the performance of the missing data
recognizer is enhanced (see Fig. 1).
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Fig. 1. The combined feature selection missing data speaker identification system. Bottom-up noise estimation produces a binary TF reliability
mask. Top-down selection of the most speaker discriminative features is used to refine this mask and improve recognition.

2.1. GMM-based Speaker Identification

Identification is performed using Gaussian Mixture Models (GMMs)
which represent each speaker as a weighted sum of M diagonal D-
variate Gaussian densities [6]. For an observation vector denoted
x = (x1, x2, ..., xD)′ and a given speaker represented by model λ,
the probability density of the observation is

p(x|λ) =

MX
k=1

ck

DY
f=1

N (xf ; μkf , σ2
kf ), (1)

where ck is the weight of the kth mixture and N (xf ; μkf , σ2
kf ) is a

uni-variate Gaussian distribution with mean μkf and variance σ2
kf .

Each speaker model is defined by the set of mean vectors, variance
vectors and weights from all the component distributions:

λ = {ck, μk, σ2
k|k = 1, 2, ..., M}. (2)

Model parameters are trained using maximum likelihood (ML)
estimation via the expectation-maximization (EM) algorithm. For a
set of S speakers S = {1, 2, ..., N} clean speech training produces
the corresponding GMMs λjcln , j = 1, 2, ..., N . The identification

decision Ŝ for an utterance consisting of a sequence of observation
vectors X = (x1,x2, ...,xT )′ is achieved by maximizing the total
log-likelihood according to

Ŝ = argmax
1≤j≤N

TX
t=1

log p(xt|λjcln). (3)

2.2. Missing Data Mask Estimation

Missing data processing is based on a TF representation of the speech
signal, where the effect of noise is modeled by the corruption of in-
dividual TF points. This requires the construction of a TF mask
indicating the reliability of each TF point. The ideal TF mask is
produced according to the 0 dB SNR criterion, where TF points are
assigned as reliable if the speech energy exceeds the noise energy:

M(t, f) =

j
1 if X(t, f) > N(t, f),
0 otherwise.

(4)

Here M(t, f) is the TF mask value at time t and frequency f , while
X(t, f) and N(t, f) are the speech and noise energies respectively.
However, the construction of this mask requires a priori knowledge
of the noise and is not producible in practice. In this system spectral
subtraction is used to estimate the binary TF reliability mask:

MBU(t, f) =

j
1 if Y (t, f) − N̄(t, f) > N̄(t, f),
0 otherwise,

(5)

where Y (t, f) is the power spectrum of the noisy speech signal and
N̄(t, f) is the estimated noise power spectrum. The 0 dB SNR crite-
rion is used due to its superior performance compared to the negative
energy criterion [1]. The estimated noise power is calculated by av-
eraging the power spectrum of the first 10 frames of the utterance.

2.3. Dynamic Feature Selection

The feature selection subsystem utilizes information in the trained
speaker models to identify the features with the most speaker distin-
guishability for the given test utterance. Discriminative analysis is
used to calculate for each filter-bank feature f ∈ F = {1, 2, ..., D}
the speaker distinguishability (quantified by the feature selectivity
S(f)) in clean speech, and multi-condition training is employed to
estimate the robustness of each feature in the given environment.

The use of diagonal covariance models translates to an assump-
tion of statistical independence between feature components. The F-
Ratio can thus be used to calculate the selectivity of a feature based
on its distribution for each speaker [7, 8]. F-Ratio analysis is applied
to each feature of speaker model λ by approximating its distribution
with the single constituent mixture of maximal weighting:

λ̃ = {cτ , μτ , σ2
τ |τ = argmax

k
ck}. (6)

The selectivity for feature f of speaker model λ̃cln is

Sλ̃cln
(f) =

(μτfcln
− μ̄τfcln

)2

σ2
τfcln

, (7)

where μτfcln
and σ2

τfcln
are the mean and variance respectively of

the distribution for feature f of model λ̃cln, and μ̄τfcln
is the average

distribution mean for feature f over all models λ̃jcln , j = 1, 2, ..., N .

Noise in the testing speech causes a mismatch between the model
based clean speech selectivities and the true speaker distinguishabil-
ity of the features. To solve this problem multi-condition training
is used to estimate the robustness of each feature in the given noise
condition and hence modify its selectivity. White noises of varying
SNR are added to the training speech data allowing the construc-
tion of noise corrupted speaker models λjsnr , j = 1, 2, ..., N, snr ∈
[−∞,∞]. Given an estimate of the global SNR of the noisy speech,
the closest set of white noise models is used to alter the selectivity
values prioritizing features that are robust.

To achieve this an attenuation factor αλ̃(f) is defined based on
the distance between the distribution mean for the clean speech mod-
els μτfcln

and the noise corrupted speech models μτfsnr at the esti-
mated global SNR:

4834



αλ̃(f) = γ−|μτfcln
−μτfsnr

|. (8)

Here γ is a strictly positive constant resulting in αλ̃(f) values in the
interval [0, 1]. The magnitude of γ determines how much attenuation
a noise affected feature receives. This technique dynamically adapts
the clean speech model selectivity values using a global estimate
of the input utterance SNR. The features whose distributions show
large invariance to the noise have αλ̃(f) ≈ 1, and the features whose
distributions are extremely distorted by the noise have αλ̃(f) ≈ 0.

The dynamic selectivity for each feature distribution is

Sλ̃(f) = αλ̃(f) × Sλ̃cln
(f), (9)

and the overall selectivity S(f) for each feature f is obtained by
summing the distribution selectivities over all speaker models:

S(f) =
NX

j=1

Sλ̃j
(f) =

NX
j=1

αλ̃j
(f) × Sλ̃jcln

(f). (10)

2.4. Bottom-up Refinement via Top-down Selection

Refinement of the TF reliability mask proceeds by first forming the
feature subset based on the selectivity values. For binary masking
the subset Ω is created by including the κ features with the highest
selectivity values. Formally this is the subset of features Ω ⊆ F
with cardinality |Ω| = κ such that

J(Ω) = max
Z⊆F,|Z|=κ

J(Z), (11)

where J(.) is the selection criterion function defined as the sum of
the feature selectivities over all included features:

J(Z) =
X
f∈Z

S(f). (12)

This subset is then expressed as a TF mask

MTD(t, f) =

j
1 f ∈ Ω,
0 otherwise

(13)

which allows each point within the bottom-up mask to be refined
based on the corresponding point in the (top-down) selection mask.
The reliability and selection masks are combined according to

MRef(t, f) = MBU(t, f) ∗ MTD(t, f), (14)

where the bottom-up reliability mask is given by MBU(t, f), the top-
down selection mask by MTD(t, f) and ∗ is the binary AND operator
(see Fig. 2).

2.5. Missing Data Recognition

Marginalization based recognition is implemented as it facilitates the
combination between bottom-up and top-down processing. Let the
refined binary TF mask vector corresponding to observation vector
xt be mt = (mt1, mt2, ..., mtD)′ = (MRef(t, 1), MRef(t, 2), ...,
MRef(t, D))′. The probability density for vector xt produced by
model λ using bounded marginalization becomes

p(xt|λ) =

MX
k=1

ck

DY
f=1

 
mtfN (xf ; μkf , σ2

kf )

+(1 − mtf )

xhighZ
xlow

N (x̃f ; μkf , σ2
kf )dx̃f

!
. (15)
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Fig. 2. Refinement of an estimated binary reliability mask using
feature selection. For a perfect (oracle) reliability mask the produced
refined mask closely approximates the original estimated mask. For
an imperfect (estimated) reliability mask unreliable inclusion errors
occurring within the non-discriminative features are removed.

To complement the top-down feature selection process the stan-
dard missing data recognition strategy is modified: bounded marginal-
ization is only performed for an unreliable TF point in the refined
mask if this point is included in the selection mask. The integration
bounds are therefore defined by

[xlow, xhigh] =

j
[0, xf ] f ∈ Ω,
[−∞,∞] otherwise.

(16)

Thus the missing data recognizer uses the knowledge provided by
the feature selection subsystem about the discriminative ability of
a particular feature in the estimated noise conditions. A TF point
labeled as discriminative by the selection subsystem is assumed to
have some useful information, even if it is unreliable according to the
bottom-up missing data strategy. However, if the feature is labeled
as non-discriminative then the point is fully marginalized and has
no effect on recognition. Using the bounded marginalization density
defined by (15) speaker recognition is performed as in (3).

3. EVALUATION

The system was evaluated via closed-set text-independent speaker
identification experiments with a 31 speaker subset (21 males and
10 females) of the TiDigits database. For each speaker 50 of the
available 77 connected digits speech utterances were randomly se-
lected for model training, and the remaining 27 utterances were used
for testing. The Hidden Markov Model Toolkit (HTK) [9] was used
to construct the GMMs, where diagonal covariance matrices were
assumed for each of the 16 mixtures. The speech utterances were
framed using a 25 ms Hamming window with a 10 ms frame step.
A 48-channel HTK mel-filterbank was used to produce log-spectral
feature vectors for each frame. A baseline system using cepstral fea-
tures was also evaluated. For this system the speaker models were
created using a vector of the first 24 mean normalized MFCCs de-
rived from the 48-channel HTK mel-filterbank.

Additive noise conditions were simulated by corrupting each
speaker’s testing utterances with stationary white noise and non-
stationary factory noise at SNRs ranging from 20 dB to −5 dB.
White noise at these SNR levels was also added to each speaker’s
training speech data to produce the multi-condition noise models re-

4835



Fig. 3. Speaker identification performance in white noise (top) and
factory noise (bottom). Results are shown for bottom-up only sys-
tems using a priori and spectral subtraction masking (Oracle Mask,
SS Mask), the combined system (Selection + SS Mask) and the cep-
stral baseline (MFCC+CMN).

quired by the feature selection process. Selection was performed
with global SNR estimates corresponding to the true SNR of the
noisy speech, and an attenuation factor of γ = 6 which was deter-
mined empirically using a smaller validation speaker set.

3.1. Results and Discussion

To determine a suitable reduced feature set size experiments were
performed using oracle missing data reliability masking. Full results
are omitted for brevity, but with a feature subset size of κ ≥ 18 the
performance of the combined system was within 1% of the bottom-
up system for white noise, and within 5% for factory noise. The de-
crease in performance for factory noise is possibly due to the white
noise based multi-condition training used to derive the feature selec-
tivities.

The combined system with 18-best feature selection was then
evaluated for spectral subtraction masking (as in (5)). The results
show significant performance improvement when the combined miss-
ing data feature selection system is used over a single bottom-up
stage (see Fig. 3). Under stationary white noise the spectral sub-
traction technique is able to provide a good estimation of the binary
TF reliability mask, and so its use alone produces recognition rates
far exceeding those of the MFCC-CMN baseline. As the SNR de-

creases the estimated TF mask becomes more sparse which causes
unreliable inclusion errors to have a larger negative effect on recog-
nition. By applying the top-down selection mask a large number of
these unreliable inclusion errors are removed, and this results in the
observed increase in performance (up to 27% absolute) compared to
the use of only the bottom-up mask.

For the non-stationary factory noise spectral subtraction is un-
able to provide an accurate mask estimation, and the standard bottom-
up system performs similarly to the MFCC-CMN baseline. How-
ever, the use of the feature selection subsystem still results in large
performance improvements (up to 25% absolute) for SNRs above 0
dB. At lower SNRs the severity of the distortion results in few TF
points which are dominated by speech. These points are extremely
unlikely to be identified by the spectral subtraction algorithm, and so
refinement of the reliability mask by the selection mask can do little
to help in this case.

The results demonstrate the validity of using top-down feature
selection to refine imperfect missing data masks for speaker recog-
nition. However, this is a preliminary study and as such has several
limitations. These include the assumption of perfect estimation of
the global SNR and the use of relatively simple discriminant analy-
sis techniques to determine the feature subsets.

4. CONCLUSIONS

We have proposed the combination of missing data and feature se-
lection for robust speaker identification. The formation of a subset
of discriminative filter-bank features allows the refinement of binary
TF reliability masks by the removal of unreliable inclusion errors
for non-discriminative bands. Experimental evaluation illustrated
that the combined approach can approximate the performance of
traditional bottom-up missing feature methods when a priori noise
knowledge is available. However when the reliability mask is im-
perfectly estimated the combined system significantly outperforms
the traditional bottom-up only approach. In future work we aim to
improve the feature selection method such that the subset is chosen
based on recognizer feedback, to test the system under a wider vari-
ety of noise conditions with more realistic speech data, and to extend
the system to use soft masking decisions.
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