
ABSTRACT 

Speech recorded by a distant microphone in a room may be 
subject to reverberation. Performance of a speaker verification 
system may degrade significantly for reverberant speech, with 
severe consequences in a wide range of real applications. This 
paper presents a comprehensive study of the effect of reverberation 
on speaker verification, and investigates approaches to reduce the 
effect of reverberation: training target models with reverberant 
speech signals and using acoustically matched models for the 
reverberant speech under test, score normalization methods to 
improve the reverberation robustness, and also reverberation 
classification via the background model scores.  Experimental 
investigation is performed, using simulated and measured room 
impulse responses, NIST-based speech database, and AGMM 
based speaker verification system, showing significant 
improvement in performance. 

 
Index Terms— Model Matching, Reverberation, Robust 

Recognition, Speaker Recognition. 

1. INTRODUCTION 

A wide range of speech communication systems are in use 
today. This variety introduces acoustic mismatch to speaker 
recognition systems i.e. the acoustic environments in the 
training stage and testing stage might be different. 
Performance of current speaker recognition systems can 
degrade significantly under mismatched conditions [1], [2] 
such as different room reverberation [3]-[5]. Speech 
communication systems operating inside rooms, in which the 
microphone is distant from the speaker, will produce 
reverberant speech. Therefore, speaker recognition systems 
utilizing current speech communication systems will produce 
poor performance under reverberation mismatch.  

Several approaches for overcoming the effect of 
reverberation have been reported. Dereverberation methods 
attempt to reconstruct the clean speech signal from the 
reverberant signal [6], however, no successful method for 
single channel dereverberation seems to exist. Another 
approach is to use a microphone array [7], to reduce room 
reflections and enhance the direct sound. However, in most 
speaker recognition applications, microphone arrays are not 
readily available. 

For speaker recognition systems it is common to divide 

solutions for general channel mismatch into three domains 
[2], [8]: feature domain compensation is aimed at removing 
the channel effects from the feature vectors prior to model 
training or verification. It includes cepstral mean subtraction 
(CMS) [2], feature mapping [8] and joint factor analysis [9]. 
Model domain techniques such as speaker model synthesis 
(SMS) [10] and eigenchannel modeling [9] attempt to 
modify the models to minimize the effects of varying 
channel. Score domain solutions aim to remove score shifts 
and scaling caused by the varying channel conditions. 
Among these methods are Z-norm [1], H-norm [11], T-norm 
[12], and Top-norm [13]. Although these methods have been 
proposed for general channel mismatch, most of them were 
not examined for reverberation mismatch.  

In this paper we study the methods of acoustic model 
matching and score normalization. In [4] the use of model 
matching showed to improve speaker recognition when 
training with the autoregressive (AR) vector method. 
Another work suggests feature domain reverberation 
compensation with model matching [5]; however, this 
method was tested with both the training data and test 
segments recorded in the same rooms, and might therefore 
suffer from over-fitting.  

The aim of the research presented in this paper is to 
improve speaker recognition performance for reverberant 
speech by extracting and utilizing information from the 
acoustic environment. The paper presents several 
contributions. Room acoustic model matching is employed in 
speaker recognition, supporting previous results [4], [5] and 
extending these results to a speaker verification system 
employing the widely used adaptive Gaussian mixture model 
(AGMM) [11]. Score normalization is also employed 
showing significant performance improvement. Finally, the 
model matching method leads to another problem – how to 
select the right target model? Reverberation classification is 
introduced which uses the background models scores, and in 
addition to the widely used reverberation time for 
reverberation parameterization, a new parameter, the frame 
definition is introduced showing improved performance. 

2. THE EFFECT OF REVERBERATION ON SPEECH 

Speech measured by a microphone in a room can be 
modeled by convolution between the speech signal and the 
room impulse response [14], the latter composed of the 
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1
The speech signals were recorded via landline telephone channels, 

but are referred to as "clean" for not including reverberation 

direct sound and reflections from the room walls and objects 
in the room. When contributions from room reflections are 
significant compared to the direct sound, the speech is said 
to be reverberant. The most common measure of 

reverberation is the reverberation time ( 60T  or RT) [14], [15] 

which is the time it takes the acoustic energy in the room to 

decay by 60dB after the source is switched off. 60T  can be 

calculated from the room impulse response ( )h t  using 

Schroeder method [15]: 
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Although 60T  has been used in a previous speaker 

recognition study [4], another parameter, called frame-
definition in this paper, seem to better represent the signal 
leakage from adjacent frames due to reverberation. It is 
based on the intelligibility parameter, the definition [14], 
defined as the ratio between the energy in the early part of 
the room impulse response and the total energy. With the 
early part set to 20ms equal to a frame length in the speaker 

recognition system, frame-definition, FD, or 20D , is given by 
20
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In this paper both 60T  and 20D  are used for reverberation 

classification.  
Both measured and simulated room impulse responses 

have been employed in this paper. The simulated room 
impulse responses have been generated using the widely 
used image method [16]. Measured room impulse responses 
were generated by measuring the response between a 
loudspeaker (KRK model RP-6) to a microphone (Bruel & 
Kjaer type 4133) in various lecture and laboratory rooms at 
Ben-Gurion University. 

3. THE SPEAKER VERIFICATION SYSTEM 

3.1. The baseline system 
Figure 1 shows a block diagram of the speaker verification 

system. 12 Mel frequency cepstral coefficients (MFCCs) and 
12 delta-MFCCs ( MFCCs) [1] are extracted from each 
frame. In addition, CMS was performed on the features to 
improve robustness [2]. In the training phase, the 
background models were trained using GMM with 1024 
Gaussians and diagonal covariance matrixes. AGMM 
training was performed in order to adapt the target models 
from the background models. In the testing phase, after 
feature extraction, a log-likelihood ratio test was employed 
to compute target and impostors scores, involving the test 
segments, target models and background models.  

System expansions beyond the baseline system are the 
reverberation classification, the model matching and the 

designing of the score normalization which are detailed in 
the following sections. 

3.2. Acoustic model matching 
Acoustic matching of speaker models involves training 

and testing under the same room acoustic conditions, e.g. 
same RT. In the training phase, several models are generated 
for each speaker under various reverberation conditions. 
First, reverberant background model (RBM) for each RT is 

produced: Clean 1  speech segments from various speakers 
are filtered by simulated room impulse response and a 
reverberant background model is trained using these 
segments. These RBMs are used also for reverberation 
classification (section 3.4). Then, using the AGMM training, 
the reverberant speaker model is adapted from the RBM and 
the speaker reverberant speech signal. Although measured 
room responses in the training data might better match the 
reverberant test segments, simulated responses [16] were 
used for convolving with the training speech signals due to 
their availability and simplicity.  

3.3. Score normalization 
This section details the score normalization methods 

which were used in the experiments. Model-dependant 
normalizations aim to remove the model bias. Among them 
is the Z-Norm [1] which uses a development group with 
several room responses for estimating the normalization 
parameters of each target model; Top-Norm [13] which uses 
the top 10% highest scores, and a modified H-Norm [11] 
designed for reverberation mismatch instead of handset 
mismatch. The modified H-Norm uses reverberant test 
segments with similar reverberation parameters as the target 
model. Also, a test-dependant normalization which aims to 
remove the test bias, T-Norm [12], was used. 
In the experiments, combined normalizations were 

 Fig.  1. The speaker recognition system 
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employed: ZT-Norm, Top-T-Norm and HT-Norm. 

3.4. Reverberation classification 
Having several target models for each speaker, each for a 

different reverberation, leads to another problem – how to 
select the target model for the score calculation? We suggest 
the use of RBMs likelihood scores for classification. Each 
RBM is trained with a large number of speakers under 
specific reverberation conditions. Then, each test segment 
with an unknown acoustic condition is tested against all 
RBMs and is classified by selecting the highest score. The 
assumption at the base of this method is that the highest 
score will correspond to the most similar reverberation 
condition, regardless of the speaker identity. This method is 
referred to as RBM classification.  

4. EXPERIMENTAL SETUP 

This section describes a set of experiments aimed to 
investigate speaker verification using model matching 
method and the RBM reverberation classification. A 
database comprising one-minute long (clean) speech 
segments, taken from NIST-99 speaker recognition 
evaluation corpus, was used for training target models for 
198 male speakers. An additional set of 50 one-minute 
speech segments of different speakers, taken from NIST-98, 
was used to train the background models. NIST-99 and 
NIST-98 speaker recognition evaluation corpora include 
conversational speech over land-line telephone, sampled at 8 
kHz, with 8 bits -low. 

Using the Image method [16], four room impulse 
responses were created with reverberation times of 0.238, 
0.513, 0.863 and 1.111 seconds. Five background models 
(one clean and 4 reverberant) and 5 target models for each 
speaker were trained as detailed in section 3.2.  

The database for testing was also taken from NIST-99, 
incorporating 589 speech segments, with durations ranging 
from 20 to 60 seconds. The results in the following sections 
are based on 589 target scores and about 116,000 impostor 
scores under given acoustic conditions and a total number of 
3534 target scores and about 696,000 impostor scores. The 
classification numbers are similar to the target scores 
numbers. 

Since the image method presents a simplistic model of an 
empty shoe-box room, the room impulse responses for the 
test segments were measured from real rooms with RT of 
0.138, 0.446, 0.491, 0.808 and 1.094 seconds. These were 
used for filtering the test speech segments, while the target 
models employed the simulated room impulse responses.  

5. RESULTS AND DISCUSSION 

Using the database described above, initial results show 
degradation with the baseline system (models trained on 
clean speech only and no score normalization) from equal 
error rate (EER) of 6.79% with the clean test segments, up to 

18.32% for reverberant test segments (table II) which 
verifies the need for a more robust system. The classification 
results and then the complete speaker recognition results are 
presented in the reminder of this section. 

5.1. Reverberation classification 
Table I.A presents a confusion matrix for the 

reverberation classification according to RT with highest 
scores marked with gray background. Scores are less than 
100% for two possible reasons. First, RT values are different 
for the test and model data. Second, test data used measured 
room responses while the model data used simulated ones. 
Furthermore, the classification does not seem to match RT 
values between test and model response. However, it does 
seem to better match FD values. This is evident by the 
diagonal behavior of the maximum score values in Table I.B, 
compared with the less diagonal behavior in Table I.A. This 
gives a motivation for categorizing the reverberation with 
FD rather than with RT. Also, a major advantage of this 
method is the very low rate of clean test segments which 
were classified as reverberant (0.44%). 

5.2. Complete speaker recognition system 
In this section the method of acoustic model matching is 

combined with the RBM classification and score 
normalization. In addition to the background models scores, 
the classification was also performed manually by matching 
test and model data according to best fits RT and FD values. 
Table II summarizes the results for all experiments. Rev in 
the test column refers to test segments with various 
reverberation conditions. Rev on the train column refers to 

Table I: Confusion matrix for reverberation classification using 
RBMs. In A, the reverberation is sorted by RT.  B is the same table as 
A only sorted by frame definition.  

Background model
1.1110.8630.5130.238cleanRev time[s]A

000.290.1599.56clean
000.730.5898.690.138

3.350.5891.554.5200.446
0.151.1712.2479.4570.491
0.8718.0869.111.9500.808
0.291.1728.8663.416.271.094

23.2635.32959.33375.702100Frame definition[%]
1.1110.8630.5130.238cleanRev time[s]B

000.290.1599.56clean100
000.730.5898.690.13898.96

0.151.1712.2479.4570.49182.81
0.291.1728.8663.416.271.09481.96
3.350.5891.554.5200.44663.18
0.8718.0869.111.9500.80859.77te

st

te
st

 

Table II.  EER [%] results for various experiments 
TopT-NormHT-NormZT-NormNo-Normmatcingtraintest

3.74-4.076.79-CleanClean

24.23-16.4418.32-CleanRev

10.459.799.918.96RTRevRev

9.689.769.0819.27FDRevRev

9.69.938.9719.36RBMRev Rev
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reverberant target models while the matching was performed 
according to the reverberation time (RT), frame definition 
(FD) and with the RBM classification. Various score 
normalization methods were employed for each experiment. 
The high EER results for model matching without score 
normalization, as shown in Table II, are due to the five 
different RBM biases. The score normalization methods 
eliminate these biases and reduce significantly the EER. 
Note that score normalization without model matching does 
not improve significantly the results either. It is the 
combination of model matching with score normalization 
which produces a significant improvement.  

EER with FD matching is a lower then EER with RT 
matching, showing that RT might not be the best parameter 
in this case. The RBM classification which was consistent 
with the FD classification reduces the EER even further with 
the use of ZT-Norm. Moreover, the RT and FD matching are 
based on the assumption that the reverberation parameters of 
the test segment are known, an assumption which does not 
hold in many cases and is not required for the RBM 
classification. Note that for clean test segments, the Top-T-
norm was superior. 

Fig. 2. presents DET (detection error trade-off) curves for 
various conditions: Reverberant test segments with matching 
according to RT, according to FD and with the use of the 
RBM classification.  Also, the DET curves for clean-clean 
(as a reference) and rev-clean (no model matching) are 
presented. For each condition the ZT-Norm was performed. 
The DET curves for matching via background models and 
via frame definition is similar, showing significant 
improvement over the rev-clean baseline system. 

6. CONCLUSION  

This paper investigated the effect of reverberation on 
speaker recognition, and proposed and evaluated methods 
for improving recognition robustness in the face of 

reverberation. We showed that significant degradation in 
performance arise due to reverberation. The use of acoustic 
model matching and score normalization was found useful in 
improving verification scores. The background model scores 
were proved to be successful for reverberation classification. 
Also, we found that the reverberation effects have higher 
correlation with definition than with the reverberation time. 
Another important conclusion is the useful utilization of 
simulated room impulse responses for target model creation 
and the development group. The simulated room impulse 
responses are easier to generate, and could be more practical 
than the measured ones in a real application. 
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  Fig. 2. DET curves for reverberant test segments on various situations 
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