
MODELING LONG-RANGE DEPENDENCIES IN SPEECH DATA FOR
TEXT-INDEPENDENT SPEAKER RECOGNITION

Ji Minga, Jie Lina,b

aInstitute of ECIT, Queen’s University Belfast, Belfast BT7 1NN, UK
bSchool of Computer Science, University of Electronic Science and Technology, Chengdu, China

ABSTRACT
In the paper, a new approach for modeling and matching long-range
dependencies in free-text speech data is proposed for speaker recog-
nition. The new approach consists of a sentence model to detail up
to sentence-level dependencies in the training data, and a search al-
gorithm that is capable of locating the matches of arbitrary-length
segments between the training and testing sentences. The search
algorithm is optimized to increase the probability for the match of
long, continuous segments as opposed to short, separated segments,
assuming that long, continuous segments contain more specific in-
formation about the speaker. The new approach has been evaluated
on the NIST 1998 Speaker Recognition Evaluation database, and has
shown improved performance.

Index Terms— Time dependence, segment modeling, speaker
modeling, speaker recognition

1. INTRODUCTION

Gaussian mixture models (GMMs) have been a major approach to
speaker recognition. Built on statistics, a GMM has the ability to
smoothly, and therefore robustly, represent the probability distribu-
tion of a speaker’s sounds, usually at a time range of 10-20 ms (i.e.,
a frame). The GMMs, however, lack the ability to show how these
short-time sounds are dependent on one another to form a real-world
speech sentence. In recent years, many approaches have been stud-
ied for modeling the dependencies between short-time acoustic fea-
tures for speaker recognition. It is assumed that both the short-time
features and their dependencies, especially over long time ranges,
carry information about the speaker.

Many studies have considered to label the speech signals into
longer acoustic segments, such as broad phonetic classes or quasi-
stationary segments. Each class or segment is then modeled and clas-
sified individually as a single unit. These approaches try to capture
the correlation within each class/segment, which typically consists
of several frames. HMMs (e.g., [1], [2]), neural networks [3], and
ALISP segmentation [4] have been used as the labeller and classifier.
A similar approach is described in [5], in which a large-vocabulary
continuous speech recognition (LVCSR) system is used to segment
the input speech into pre-defined acoustic units, and this is followed
by GMMs one for each unit group. Other studies have considered the
incorporation of duration or prosodic features, such as pitch patterns,
energy trajectories, etc., into the recognition process (e.g., [6]–[8]).

More recent studies have re-considered the use of templates to
capture dependencies in the speech signals. For example, an ap-
proach is described in [9] in which a LVCSR system is used to
identify similar phonetic units between the training and testing data,
both represented in templates; the acoustic similarity of the identi-
fied units is subsequently decided by using a DTW (dynamic time

warping) algorithm, which produces the score for recognition. A
similar approach is presented in [10], which directly uses DTW to
spot and compare similar words between the training and testing sen-
tences. In contrast to other modeling approaches, templates involve
less manipulation on the speech data and, thus, may be able to more
accurately represent the dependencies in the given signals. How-
ever, unlike other statistical models, templates lack smoothness (and
hence robustness) in representing the short-time features, which are
subjected to random variations.

In this paper, we propose a new approach to address the prob-
lem. The new approach has the following characteristics: (1) it com-
bines statistical and example-based approaches seamlessly in the
same framework, to offer both smooth representation for the short-
time features and sentence-long representation for the dependencies;
(2) it allows the match of arbitrary-length segments between the
training and testing data, not limited to any subword or word units,
and not limited to linguistical segments; and (3) it combines the seg-
mentation and recognition in the same framework subject to a joint
optimality criterion – to focus the recognition on the longest match-
ing segments. Long segments usually contain richer dependencies
and thus, should be emphasized for likely carrying more specific in-
formation about the speaker.

2. METHODOLOGY

2.1. Modeling Long-Range Dependencies

The new approach consists of two parts: (1) a seed acoustic model
representing the short-time features of all the training sentences, and
(2) a set of sentence models, built on the seed model and one sen-
tence model for each training sentence, representing the dependen-
cies of short-time features in the training data. The sentence models
of the same speaker are grouped together and used for recognition.
We start to build the new system by training a seed model with the
available training data. The seed model could be either a traditional
unsupervised representation such as a GMM, or a traditional super-
vised representation such as the phone-class models (each model it-
self is usually a GMM or HMM). Many of the previous approaches
to speaker modeling have stopped at the construction of the seed
model, which characterizes a speaker’s sounds at the time range of a
frame or a phone. In this research, we move one step further. We add
models for long-range dependencies, up to the length of sentences,
for recognition.

Without loss of generality, we assume that a GMM is used as the
seed model for each speaker. Denote the GMM for speaker λ as

Gλ = {pλ(x|k), wλ(k) : k = 1, 2, ..., K} (1)

where pλ(x|k) represents the k’th Gaussian component and wλ(k)
is the corresponding weight. Gλ models the probability distribu-
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tion of a speaker’s short-time features, as seen in the training data.
Based on Gλ, we further develop a representation for each train-
ing sentence that captures the full-time dependencies within the sen-
tence. Let X = (x1, x2, ..., xT ) be a training sentence for speaker
λ, with T frames and xt being the frame at time t. A probabilis-
tic representation for X can be obtained by taking each frame from
X and finding the Gaussian component in Gλ that maximizes the
likelihood of the frame. This results in a time sequence of likeli-
hoods {pλ(x1|k1), pλ(x2|k2), ..., pλ(xT |kT )}, where pλ(x|kt) is
the Gaussian component with maximum likelihood for frame xt.
Trim this time sequence by keeping only one component for any im-
mediately repeating Gaussian components. Thus, we obtain a model
for sentenceX , as a time sequence of maximum-likelihood Gaussian
components. Denote this sentence model, for training sentenceX of
speaker λ, as

Sλ,X = {pλ,X(x|s) : s = 1, 2, ..., $λ,X} (2)

where pλ,X(x|s) are Gaussian components in Gλ, sequenced by
their orders of occurrence, s, to match training sentence X , and
$λ,X is the number of Gaussian components in this representation
for training sentence X . The mixture weights of the GMM are not
explicitly included in the sentence model (2). As will be shown later,
the weights can be implied in the matching algorithms.

It may be noted that the above model Sλ,X for sentence X is
similar to an HMM. Indeed, each pλ,X(x|s) in the model can be
viewed as an emission probability density accounting for a segment
of consecutive frames with similar likelihoods, and the sequence in-
dex s can be viewed as an index for the state. With left-to-right state
transitions, the model characterizes, in a statistical way, the complete
temporal dynamics inX , from acoustic to lexical and to language to
form the complete sentence. Traditional GMM approaches perform
speaker recognition based on Gλ. In the following, we describe an
approach performing recognition based on Sλ,X , or indirectly onGλ

through Sλ,X , for all the training sentences X for speaker λ. The
difference between the new approach and the GMM approach is im-
portant: the GMM approach allows consecutive frames of a testing
sentence to be matched by any sequence of Gaussian components in
Gλ, while the new approach emphasizes the match by the Gaussian
sequences forming the training sentences. The new system, thus, ex-
ploits similarities both between the short-time features and between
their dependencies for recognition.

Recently, there are studies into example-based approaches to
speech and speaker recognition (see, e.g., [9], [11]). These approaches
seek more accurate representations of speech signals by making less
assumptions about their characteristics. The above speaker-sentence
model, (2), lies between the “do-nothing” model (e.g., templates)
on one extreme, and the “heavy-handed” model (e.g., GMMs) on
the other, representing a balance between the capture of long-range
dependencies and the smoothness of the representation.

2.2. Detecting Matching Segments

In recognition, we look for similar segments of consecutive frames
between the testing sentence and the sentence model, and base the
decision on the degree of the similarity. We consider a full search
for the similar segments. Let O = (o1, o2, ..., oN ) be a testing
sentence with N frames. To find similar segments between O and
sentence model Sλ,X , we take every segment from O and compare
it with every potential left-to-right state sequence in Sλ,X , which
defines a segment in training sentence X to be compared with the
testing segment. Denote by oτ,t = (oτ , oτ+1, ..., ot) a testing seg-
ment in O, consisting of consecutive frames from time τ to t, and

by sτ,t = (sτ , sτ+1, ..., st) a state sequence in Sλ,X , consisting
of some continuous states forming a potential match for oτ,t. We
measure the similarity between oτ,t and sτ,t by using the following
probability expression:

Pλ,X(sτ,t|oτ,t) =
pλ,X(oτ,t|sτ,t)�

λ′,X′∈λ′,s′τ,t∈Sλ′,X′ pλ′,X′(oτ,t|s′τ,t)
(3)

where pλ,X(oτ,t|sτ,t) is the likelihood that oτ,t matches state se-
quence sτ,t in sentence model Sλ,X , and this is compared to the
likelihoods associated with all possible state sequences that could
match oτ,t, considering all the sentence models of all the speakers
as shown in the denominator. Note that Pλ,X(sτ,t|oτ,t) has char-
acteristics of the posterior probability of sτ,t given oτ,t, assuming
equal prior probabilities for all the state sequences. The probability
Pλ,X(sτ,t|oτ,t) has an important characteristic: it favors the con-
tinuity of the matching segments, in terms of giving larger values
to longer, continuous frame-state matches. To show this, rewrite
Pλ,X(sτ,t|oτ,t) as a function of the individual likelihood ratios be-
tween different state sequences, i.e.,

Pλ,X(sτ,t|oτ,t) = 1/[1 +
�

λ′,X′,s′τ,t �=sτ,t

pλ′,X′(oτ,t|s′τ,t)

pλ,X(oτ,t|sτ,t)
] (4)

Assume that oτ,t and sτ,t are a pair of matching segment and state
sequence, such that pλ,X(oτ,t|sτ,t) ≥ pλ′,X′(oτ,t|s′τ,t) for any λ′,
X ′ and s′τ,t �= sτ,t. Expressing oτ,t as a union of two consecutive
subsegments oτ,γ and the complement oγ+1,t, where τ ≤ γ ≤ t−1,
we can have

pλ,X(oτ,t|sτ,t)

pλ′,X′(oτ,t|s′τ,t)
=

pλ,X(oτ,γ |sτ,γ)pλ,X(oγ+1,t|sγ+1,t)

pλ′,X′(oτ,γ |s′τ,γ)pλ′,X′(oγ+1,t|s′γ+1,t)

≥ pλ,X(oτ,γ |sτ,γ)

pλ′,X′(oτ,γ |s′τ,γ)
(5)

The last inequality is obtained because pλ,X(oγ+1,t|sγ+1,t) ≥
pλ′,X′(oγ+1,t|s′γ+1,t) based on the assumption that sγ+1,t matches
oγ+1,t. Applying (5) to (4), we obtain

Pλ,X(sτ,γ |oτ,γ) ≤ Pλ,X(sτ,t|oτ,t) for any τ ≤ γ ≤ t − 1 (6)

Equation (6) indicates that higher probabilities are obtained when
longer segments are matched. Furthermore, we can show that higher
probabilities are obtained when successive matching segments are
treated as a whole than as separated segments, i.e.,

Pλ,X(sτ,γ |oτ,γ)Pλ,X(sγ+1,t|oγ+1,t) ≤ Pλ,X(sτ,t|oτ,t) (7)

Inequality (7) holds due to (6) and due to Pλ,X(sγ+1,t|oγ+1,t) ≤ 1.
With the important properties (6) and (7), the probability function
Pλ,X(sτ,t|oτ,t) can be used as a detector to detect matching seg-
ments with large continuities. Maximizing Pλ,X(sτ,t|oτ,t) among
variable τ , t andX will lead to matching segments with large conti-
nuities between the testing sentence and the training sentence mod-
els. We can thus base recognition on the similarity of these large
matching segments. Large segments usually contain richer and more
distinct temporal dynamics. Match or mismatch of long-range tem-
poral dynamics could be an important indication of the match or
mismatch of the speakers.

Given a testing sentenceO = (o1, o2, ..., oN ), we perform a full
search for the matching segments. We assume that if matched, a seg-
ment oτ,t with length L (L = t− τ +1) can be accounted for byM
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consecutive states si,j = (si, si+1, ..., sj),M = j−i+1, in a train-
ing sentence model. An average comparison between L andM can
be estimated conveniently by examining the training sentences over
their sentence models, and this is used in our system. Thus, for every
τ ∈ (1, N) and t > τ , we calculate the likelihood pλ,X(oτ,t|sτ,t)
using the Viterbi algorithm, where sτ,t is the most-likely state se-
quence formed on state set si,j from training sentence model Sλ,X .
The computation is performed for every state set si,j in Sλ,X with
1 ≤ i, j < $λ,X , for every training sentence X of speaker λ. Based
on the likelihoods, we form the probabilities Pλ,X(sτ,t|oτ,t) accord-
ing to (3). As shown above, given a τ , Pλ,X(sτ,t|oτ,t) would in-
crease with t if there is a continuing match between oτ,t and sτ,t,
and would start to decrease at the t where ot is severely mismatched
by st (assuming that it is nowmatched by a different state s′t). There-
fore, for each τ , we only retain the Pλ,X(sτ,t|oτ,t) up to the t before
it starts to decrease. The retained Pλ,X(sτ,t|oτ,t) indicates all pairs
of potentially continuously matching segments between the training
and testing data, including the segments with only a single frame
(i.e., oτ,t = oτ ).

2.3. Algorithms for Speaker Recognition

For each speaker λ, we use dynamic programming (DP) to combine
the segment probabilities Pλ,X(sτ,t|oτ,t) into an overall probability
for the complete testing sentence, which is used in the recognition
decision to either confirm or reject the speaker. DP is used to max-
imize this sentence probability by selecting the matching segments
with large probabilities. This will result in a score focusing on large
matching segments (since they have large segment probabilities) and
hence improving the speaker discrimination. Let δλ(t) represents a
partial logarithmic score ending at time t (1 < t ≤ N ) for speaker
λ. We can have the following recursion:

δλ(t) = max
τ

[δλ(τ − 1) + Lτ,t max
X∈λ,sτ,t∈Sλ,X

ln Pλ,X(sτ,t|oτ,t)]

(8)
The maximization inside the brackets seeks the state sequence that
has maximum similarity to oτ,t in terms of maximum probability,
and the search is performed within all the training sentences for
speaker λ. In (8), the score for each segment oτ,t is the segment
probability Pλ,X(sτ,t|oτ,t) weighted by the corresponding segment
length Lτ,t = t− τ + 1. This weighting converts the segment prob-
ability Pλ,X(sτ,t|oτ,t), which has a value within [0, 1] regardless of
the segment length Lτ,t as shown in (3), to a score proportional to
the corresponding segment length. Thus, the overall sentence prob-
abilities for different segmentations become comparable, which are
only a function of the length of the testing sentence, independent of
the segmentation.

Further, an alternative to (8) can be obtained, by replacing the
maximization over the state sequence with a summation over all the
state sequences belonging to the same speaker, i.e.,

δλ(t) = max
τ

[δλ(τ − 1) + Lτ,t ln
�

X∈λ,sτ,t∈Sλ,X

Pλ,X(sτ,t|oτ,t)]

(9)
Given a testing segment, (8) considers only the best match while (9)
takes into account all potential matches from the training data. It is
interesting to note that, by limiting each searched segment to a single
frame, i.e., oτ,t = oτ , (9) is reduced effectively to a form of GMM.
Specifically, in this single-frame segment case, each summed term
in (9) is a frame-based Gaussian likelihood of speaker λ normal-
ized by a speaker-independent constant (i.e., (3)); the sum is over
all Gaussian components of the speaker through the sum over all

the speaker’s training sentences; different Gaussian components may
appear different times in the sum depending on how often they occur
in the training sentence models – this is equivalent to assigning them
different weights, according to their individual importances in the
training data. This is indeed a from of GMM and our new approach,
thus, effectively include the GMM approach as a special case.

For a testing sentence with N frames, the score δλ(N) calcu-
lated using (8) or (9) is ready to be used for speaker identification.
With a further normalization against the length of the testing sen-
tence, the score will become usable for speaker verification. The
normalized score for verification is obtained as follows:

δ̄λ(N) =
1

N
δλ(N) (10)

Our approach is different from previous approaches described in
[5], [9], which rely on a speech recognizer to find similar linguistic
units (e.g., triphones or words) between the training and testing data.
Nor our approach is similar to the ALISP approach [4] which only
models and compares quasi-stationary segments in the speech data.
Our new approach is completely data driven, and is capable of au-
tomatically detecting the matches of arbitrary-length, stationary or
nonstationary, time processes between the training and testing sen-
tences. The found matching processes can be linguistical, such as
similar phones or phone strings, or less or non-linguistical, such as
similar interjections or any sounds from the speaker which may not
carry a linguistic identity but may be used to identify the speaker.

3. EXPERIMENTAL RESULTS

Experiments were conducted on the NIST 1998 Speaker Recognition
Evaluation database, consisting of telephone, conversational speech
data from the Switchboard-II corpus. The database contains 250
male and 250 female speakers. These speakers serve both as tar-
get speakers and as impostors. NIST has designed a set of experi-
ments on this database, dependent on the training and testing con-
ditions. As preliminary experiments, we considered two particular
cases: each speaker is trained using two separate conversations from
the same phone number, each conversation lasting about 1 min (i.e.,
two-session training), and the testing sentences are from the same
and different phone numbers, respectively, each having a duration
about 3 sec (i.e., 3s, same number/different number testing).

We trained a GMM with 128 Gaussian components as the seed
model for each speaker, and built a sentence model for each train-
ing conversation on the seed model. In recognition, the algorithms
described in Sections 2.2 and 2.3 were used to search matching seg-
ments between the training and testing sentences and produce the
matching score. While the algorithms assume that the matching
segments can have arbitrary length, from a single frame to a com-
plete sentence, in the experiments we limited the maximum match-
ing length to 20 frames. This reduces the amount of computation.
The speech was divided into frames of 20 ms at a frame period of
10 ms. Each frame was modeled by a feature vector consisting of
five subbands derived from a 25-channel mel-scale filter bank. First-
order derivatives, calculated over the range of ± 2 frames, were
added to the frame vector. Subband features were used in the ex-
periments for their potential robustness to local frequency-band cor-
ruption [12].

Fig. 1 and 2 present the results by the proposed new approach,
compared to a GMM using the same type of features and same num-
ber of mixtures for each speaker. The new approach offered consis-
tent improvement, reducing the equal error rate (EER) from 11.4%
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to 9.8% for the same number test, and from 29.9% to 27.1% for the
different number test.

Fig. 3 shows the histogram of the length of the matching seg-
ments between the testing sentences and training sentence models
decided by the new algorithm during the same number test. These
multi-frame segments account for 48% of the total duration of the
testing sentences. The remaining testing durations were matched
with single frames selected from the models without following the
training-sentence temporal dynamics. This may indicate that, over
these durations, there is no significant matching dynamics between
the training and testing sentences.

4. CONCLUSIONS

This paper described a new approach for modeling and matching
long-range temporal dependencies in free-text speech data. The new
approach uses a sentence model to represent up to sentence-level de-
pendencies in the training data, and uses a full-search algorithm to
locate the matches of arbitrary-length segments between the training
and testing sentences. The sentence model is built upon a combina-
tion of statistical and example-based approaches. The search algo-
rithm is optimized to increase the probability for the match of long,
continuous segments. Preliminary experiments on the NIST 1998
SRE database have shown the potential of the new model to offer
improved performance for text-independent speaker recognition.
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Fig. 1. DET curves for the proposed new approach and GMM for
two-session training, same number test with 3-s durations.
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Fig. 2. DET curves for different number test with 3-s durations.

Fig. 3. Histogram of the length of the matching segments between
the training and testing sentences (3s, same number test).
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