
AUTOREGRESSIVE MODEL-BASED SPEECH PACKET-LOSS CONCEALMENT

Guoqiang Zhang and W. Bastiaan Kleijn

ACCESS Linnaeus Center, Electrical Engineering
KTH - Royal Institute of Technology

Stockholm, Sweden
{guoqiang.zhang,bastiaan.kleijn}@ee.kth.se

ABSTRACT

We study packet-loss concealment for speech based on autoregres-
sive modeling using a rigorous minimummean square error (MMSE)
approach. The effect of the model estimation error on predicting the
missing segment is studied and an upper bound on the mean square
error is derived. Our experiments show that the upper bound is tight
when the estimation error is less than the signal variance. We also
consider the usage of perceptual weighting on prediction to improve
speech quality. A rigorous argument is presented to show that per-
ceptual weighting is not useful in this context. We create simple and
practical MMSE-based systems using two signal models: a basic
model capturing the short-term correlation and a more sophisticated
model that also captures the long-term correlation. Subjective qual-
ity comparison tests show that the proposed MMSE-based system
provides state-of-the-art performance.

Index Terms— Least mean square methods (MMSE), Packet
loss concealment (PLC), Autoregressive processes

1. INTRODUCTION
With the widespread usage of the internet, voice over IP has become
increasingly popular. To combat the unreliable delivery of voice
packets over the internet, various packet-loss concealment (PLC)
approaches have been proposed. PLC approaches are particularly
useful when existing codecs are used without forward error correc-
tion. The basic principle behind PLC is to exploit the redundant
information about the missing speech segment that is embedded in
neighboring packets. Many of the approaches to PLC are formu-
lated in a heuristic manner. However, the procedures can roughly be
divided into methods that can be motivated with a maximum likeli-
hood (ML) based criterion and methods that can be motivated with
the minimum mean squared error-based (MMSE) criterion.

A large number of PLC procedures replace the missing segment
with a signal that is generated by a model that is similar to that of the
previous signal segment. These methods can be interpreted as ML
methods. The typical set theorem from information theory states that
asymptotically with increasing length any sequence generated by the
model is equally likely [1]. A commonly used speech model is the
autoregressive (AR) model, which is estimated using linear predic-
tion (LP). Gündüzhan and Momtahan proposed to construct the ex-
citation signal for the autoregressive model of the missing segment
by repeating the excitation signal of the previous received speech
with a periodicity that equals the pitch period [2]. In [3], Wong et
al. propose to classify the missing segment into voiced, unvoiced or
partially voiced types and construct the excitation signal correspond-
ingly. The conventional PLC methods performed in the waveform
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Fig. 1. PLC performance for a voiced speech segment using the pro-
posed SMSE and LSMSE algorithms. The speech segment between
the two dotted lines is assumed lost.

domain (e.g., [4]) can also be motivated from a ML-based perspec-
tive. The missing packet is assumed to exhibit similar characteristics
as the neighboring speech and signal repetition is used to cover the
missing gap.

The literature on usage of the MMSE criterion in the PLC con-
text is relatively limited. In [5], Rødbro et al. employ a hidden
Markov model (HMM) to track the evolution of speech features
such as the pitch frequency. Bene ting from the sophisticated HMM
model, the feature vector of a missing packet is estimated using the
MMSE criterion and the harmonic sinusoidal parameters for synthe-
sizing the speech are then constructed from the feature vector. In [6],
Kondo and Nakagawa propose the use of a high-order AR model to
capture both the short-term and long-term speech correlations. The
missing speech samples are then predicted recursively by running
the model with zero input.

This paper aims i) to study the properties of packet-loss conceal-
ment based on rigorous, model-based estimation of the missing sam-
ple sequence using the MMSE criterion and ii) to develop a simple
and practical PLC system based on this rigorous approach. The AR
signal model is employed. The model parameters must be estimated
from a nite data sequence, which introduces a model estimation er-
ror. We study how this model estimation error affects the prediction
of lost packet and an upper bound for the MSE bound is derived.
We also consider the usage of perceptual weighting with the aim to
gain better perceived quality. A rigorous argument is provided to
show that the usage perceptual weighting results in a structure that
is equivalent to straightforward optimal prediction.

Our work is performed in the context of two AR signal models:
a basic model describing the short-term correlation and an extended
model capturing also the long-term correlation. Fig. 1 shows signals
reconstructed by applying optimal MMSE prediction based on these
two models.
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2. SIGNALMODEL
We use autoregressive (AR) models for the speech signal. This
model has been utilized extensively and successfully in speech cod-
ing and speech enhancement. In this section we rst describe the
basic signal model, which accounts for the short-term correlations.
This model is then extended to include the so-called long-term cor-
relations.
2.1. Basic Signal Model
This basic model captures the short-term correlations, which are
largely determined by the vocal tract characteristics. Let us denote
the sampled speech sequence as sn, n = . . . ,−1, 0, +1, . . .. The
basic speech-signal model is then

sn =

p∑
i=1

aisn−i + wn, (1)

where the excitation wn is white Gaussian noise with variance σ2

and a = [ a1 a2 . . . ap ]T is the model coef cient vector.
The transfer function takes the form of Hs(z) = 1

A(z)
, where

A(z) = 1 −
∑p

i=1 aiz
−i. (For 8 kHz sampling, the speech model

order is typically set as p = 10.) Thus, the AR model is uniquely
speci ed by {a; σ2}. To facilitate our derivations, we use the corre-
sponding state space model:

xn+1 = Faxn + Gwn

yn = Hxn
, (2)

where xn+1 = [sn sn−1 . . . sn−p+1]
T , and G

T = H =
[1 0 . . . 0]1×p. The transition matrix Fa is then given by

Fa =

⎡
⎢⎢⎢⎣

a1 a2 . . . ap−1 ap

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎦ . (3)

In the present context, the main advantage of the state space model
is that it facilitates the de nition of the Kalman lter, which in turn
provides optimal linear prediction [7].
2.2. Extension to Long Term Correlations
It is well known that the speech signal exhibits both short-term and
long-term correlations. The long-term correlations are associated
with the oscillation of the vocal cords and, thus, with voiced speech.
Accurate reconstruction of the long-term correlations is vital for per-
ceptual quality.

We re ne our speech generation model by incorporating the long-
term correlations using a transfer function

Hsl =
1

A(z)

1

1 − Gz−D
, (4)

where D denotes the pitch period in sample and G is a correla-
tion factor. The extension of the state-space model to include (4)
is straightforward and not reproduced here.

3. MMSEMISSING SEGMENT PREDICTION

In this section, we employ the MMSE criterion to address packet-
loss concealment. The best linear prediction given the model is stud-
ied rst. We then investigate how the estimation error of the model
parameters affects the prediction. Finally, we study the application
of perceptual weighting prediction for improving the speech quality.

3.1. MMSE Prediction
We now formulate the mean-square-error (MSE) optimal prediction
for the basic model (2). We supposed that the received speech se-
quence is Sn−1

n−k = {si, n − k ≤ i ≤ n − 1}, which is generated
from the AR model {a; σ2} and that the subsequent signal samples
are unknown.

We now consider the MSE-optimal prediction (or estimation) of
sn+m or yn+m+1, m ≥ 0, from the real model and history data,
Θ = {a; Sn−1

n−k}. Applying the state space model (2), xn+m+1 can
be expressed as

xn+m+1 = F
m+1
a

xn +
m∑

i=0

F
i
a
Gwn+m−i. (5)

It follows immediately from Kalman lter theory [7] that the optimal
MSE estimator x̂n+m+1 of xn+m+1 is

x̂n+m+1 = F
m+1
a

xn. (6)

Let us denote the prediction error by x̃n+m+1|n = xn+m+1 −
x̂n+m+1. The covariance matrix of the estimation error,Pn+m+1|n =

E[x̃n+m+1|nx̃
T
n+m+1|n], is then given by

Pn+m+1|n = σ2
m∑

i=0

F
i
a
GG

T
F

iT
a
. (7)

Thus, the corresponding prediction and prediction error for sn+m

are

ŝn+m(a) = F
m+1
a

(1, :)xn, (8)

εn+m|n−1(a) = σ2
m∑

i=0

(Fi
a
(1, 1))2, (9)

where F
m+1
a

(1, :) is the rst row of Fm+1
a

. The analysis of the pre-
diction of the missing segment is analogous for the advanced signal
model (4).

The estimation process for the advanced model is identical for
voiced and unvoiced speech. For unvoiced speech, the factor G is
close to zero. As a result, the MMSE-based recovered signal decays
suf ciently fast without inducing arti cial annoying sounds. In con-
trast, for voiced speech the recovered signal decays relatively slowly.
Comparing to [6] which applied a high order (e.g., 128) AR model
for tracking the long term speech correlation, the model we exploit
adapts to the estimated pitch and has fewer parameters to be esti-
mated. Thus, the required signal length for parameter estimation is
reduced.

Note that only the speech preceding the missing segment is uti-
lized for reconstruction. This makes the proposed algorithms more
exible as the speech after the missing segment is not required com-
pared with existing methods (e.g., [6]). To distinguish the algorithms
for the two models, we denote the method based on the basic model
as SMSE and the method based on the extended model as LSMSE.

3.2. Effect of Model Estimation Error on Prediction
In a practical system, the model parameters are not available but
must be estimated from the signal. This motivates us to study the
effect of the model estimation error on the prediction (estimation) of
the missing segment.

It is known from [8] that estimating the model vector a from the
received data Sn−1

n−k by applying Yule-Walker estimation results in a
random vector ad satisfying

ad ∼ AN (a,
σ2

k
R
−1
p ), (10)
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where Rp is the covariance matrix
[
r(i−j) = E[sisj ]

]p

i,j=1
. Equa-

tion (10) shows that as k → ∞, ad is asymptotically unbiased and
has a normal distribution with covariance matrix σ2

k
R−1

p . To predict
sn+m from {ad; Sn−1

n−k} we can use (8):

ŝn+m(ad) = F
m+1
ad

(1, :)xn. (11)

In practice, we must use a realization of (11) and it is important to
de ne a bound on the variance in the prediction resulting from the
estimation process for a:
Proposition 3.1 For the prediction of sn+m as speci ed by (11), the
associated mean square error is asymptotically bounded by

εn+m|n−1(ad) ≤ σ2
m∑

i=0

(1 +
p + 2i

k
)(Fi

a
(1, 1))2. (12)

as the signal length k for model estimation increases. The bound is
asymptotically tight everywhere for k → ∞.

The proof is not trivial and will be provided elsewhere. The proof
uses that the Taylor expansion [8] of Fm+1

ad
(1, :) in (11) is asymp-

totically normal distributed with mean F
m+1
a

(1, :). The MSE for
ŝn+m(ad) is then analyzed. xn and ad are assumed uncorrelated in
the derivation.

It is known that for a stable system as speci ed by (2), all the
eigenvalues of Fa are within the unit circle, i.e., |λi(Fa)| < 1, for
all i. Then asm → ∞, the eigenvalue λm

i of Fm
a
would

λm
i → 0 for all i.

Denote λmax = maxp
i=1 |λi(Fa)|. It can be shown that

F
m
a

(1, 1))2 = O(|λmax|
2m). Thus, as m → ∞, the right side of

(12) results in

lim
m→∞

[
σ2

m∑
i=0

(1 +
p + 2i

k
)(Fi

a
(1, 1))2

]
= C, (13)

where C is a constant. The convergence speed is related with the
prediction vector a. As the correlation between samples is getting
weak,i.e., |a| is getting small, it would converge fast. On the other
hand, (9) takes the form of

lim
m→∞

[
σ2

m∑
i=0

(Fi
a
(1, 1))2

]
= r0. (14)

Observing (13) and (14), it is immediate that for nite signal length
utilized for model estimation, i.e., k < ∞, C > r0 and as k → ∞,
C lands on r0.

3.3. Why perceptual weighting does not affect Prediction

   HW (z) HKF (z) H−1
W (z)

Sn−1
−∞

Y n−1
−∞ ŷn+m ŝn+m

Fig. 2. the Kalman lter in tandem with perceptual weighted pre-
and post- lters.

The weighted Kalman lter is successfully employed in [9] for
speech enhancement, with the lter structure shown in Fig. 2. The

weighting lter, which deemphasizes the formant structure of the
speech segment, takes the form

HW (z) =
A(z/γ1)

A(z/γ2)
, 1 ≥ γ1 ≥ γ2. (15)

When using a weighted Kalman lter, the mean squared error is
redistributed towards high energy spectrum regions. This leads to
better perceived quality. In this section, we investigate perceptual
weighting in the context of packet-loss concealment. We show that
no perceptual improvement can be achieved by perceptual weight-
ing.

We denote the output of the lter HW (z) as {yn}. It can be
modeled with an ARMA model with transfer function H(z) =

A(z/γ1)
A(z)A(z/γ2)

. Ignoring the Kalman lter of Fig. 2 and the applica-
tion of the inverse lterH−1

W (z) to {yn} gives exactly {sn}. Thus,
sn+m can also be expressed as

sn+m =

n+m∑
i=−∞

cn+m−iyi. (16)

Suppose the received speech sequence is Sn−1
−∞ or equivalently

Y n−1
−∞ (as HW (z) is linear and invertible). Then the optimal pre-
diction for yn+m is given as

ŷn+m|n−1 = E[yn+m|Y n−1
−∞ ] = E[yn+m|Sn−1

−∞ ]. (17)

Consequently,

ŝn+m =

n−1∑
i=−∞

cn+m−iyi +

n+m∑
i=n

cn+m−iŷi|n−1. (18)

Note now that ŝn+m in (18) is the optimal prediction

ŝn+m = E[sn+m|Sn−1
−∞ ].

This shows that exploiting perceptual weighting cannot improve per-
ceived speech quality. The key point for the successful application of
weighting in speech enhancement is that the component yi of sn+m,
i < n + m, is estimated from the noisy speech up to i due to the
causality constraint. Thus, the estimation is not optimal in the en-
hancement case, as the noisy speech after i is not exploited in esti-
mation.

4. RESULTS
The upper MSE bound of Proposition 3.1 is valid everywhere, and
is asymptotically tight as the data length for the model estimation
increases. We verify the proposition for data lengths that occur in
practical communication systems (of the order of several hundred
samples). In addition, we report the performance of the proposed
SMSE and LSMSE algorithms as obtained in a subjective listening
test.

4.1. Experimental MSE Bound Veri cation
The veri cation was performed on a synthetic speech sequence gen-
erated with 10’th order AR model with model parameters estimated
from a real speech sequence sampled at 8 kHz. The variance of the
stationary process is r0

.
= 1142. We examined the upper bounds for

data lengths k = 160 and k = 640 (corresponding to 20 ms and 80
ms, respectively). Fig. 3 displays both the measured MSE curve and
the theoretical upper bounds for the MSE for the missing segment
for the indicated data lengths k. For k = ∞ the model parameters
are estimated without error.
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Fig. 3 shows that the bound of Proposition 3.1 is essentially
tight when the MSE is less than the signal variance. That the error
does not exceed the variance of the signal follows from the stability
of the models estimated using the Yule-Walker estimation procedure.
This region increases in duration for increasing data length k. The
gure also shows that, for common data lengths, the prediction error
is signi cantly larger than the assumption of perfect estimation of
the prediction parameters a would indicate. When applied to other
AR parameter sets, they exhibit the same trends.
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Fig. 3. Dotted curve denotes the theoretical MSE bound and solid
curve denotes the simulated MSE for k = 160 and k = 640, respec-
tively. The dash-dotted line denotes the variance r0 for reference.
4.2. Subjective Quality Comparison
We tested the performance of our MMSE predictor using four sen-
tences from female speakers and four frommale speakers with 16kHz
sampling frequency were selected from the TIMIT database [10].
The sentences were down-sampled to 8kHz and represented in 16-
bit linear PCM form. The packet length was set to 10 msec. The
analysis window length for extracting AR vectors awas 20 msec, for
the two packet lengths before the missing one. A Hamming window
was applied in the LPC analysis. When part of the real speech in the
analysis window was not available due to packet loss, it was replaced
by reconstructed speech. To smooth the transition from the recon-
structed speech to the received speech, the prediction operation was
continued with L = 40 into the received speech and overlap-adding
operation was then performed with the linear weighting strategy. The
pitch period in LSMSE method was estimated by applying a pitch
tracking algorithm similar to that of [11]. The factor G in (4) is
the associated normalized correlation value. Packets were discarded
randomly and independently.

The DCR subjective quality test [12] was conducted to evalu-
ate our algorithms. The compared PLC schemes were the ITU-T
G.711 Appendix I algorithm (denoted as g711a1) and the forward
prediction algorithm presented in [6] (denoted as HighOrder). The
listeners were instructed to rate each processed sample compared to
the original one to a 5-graded quality score: 5 - degradation is in-
audible, 4 - degradation is audible but not annoying, 3 - degradation
is slightly annoying, 2 - degradation is annoying, and 1 - degrada-
tion is very annoying. The Mean Opinion Score (MOS) is displayed
in Fig. 4. Eleven listeners participated in the test. The test results in-
dicate that our LSMSE algorithm gives comparable result to g711a1
and outperforms the HighOrder algorithm. The test con rms that
considering only the short-term correlations is insuf cient, rendering
the worst performance.

5. CONCLUSION
We conclude that formal mean-square-error (MSE) based estima-
tion methods can provide state-of-the-art packet-loss concealment
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Fig. 4. Subjective PLC performance using the DCR test.

performance. The resulting LSMSE algorithm has low complex-
ity and can be integrated in existing codecs easily. We provided
an upper bound for the MSE that was shown to be tight when the
MSE is larger than the signal variance even for practical data lengths
(e.g., k=160). We conclude from our results that the estimation error
for the predictor parameters contributes signi cantly to the estima-
tion error for the missing packet, thus emphasizing the importance
of relatively long estimation windows. We showed that perceptual
weighting can not improve speech quality in the context of MSE
based packet loss concealment.
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