
ONLINE TRAININGMETHODS FOR GAUSSIANMIXTURE VECTOR QUANTIZERS

Ethan R. Duni and Bhaskar D. Rao

Department of Electrical and Computer Engineering
University of California, San Diego

La Jolla, CA 92093-0407
Email: ethan.duni@gmail.com, brao@ucsd.edu

ABSTRACT

This paper presents techniques relevant to the online training of
Gaussian Mixture Vector Quantizer (GMVQ) systems. Techniques
for learning from quantized data are considered, which enables
online training con gurations wherein the training is carried out
remotely from the encoder. Next, methods for recursive training
are presented, which eliminate the need to store large databases of
example data, and also enable adaptive operation of the GMVQ
system. These techniques are demonstrated on the problem of wide-
band speech spectrum quantization, and the performance losses due
to the use of quantized training data are experimentally quanti ed as
a function of the bit rate.

Index Terms— Quantization, Speech coding, Speech commu-
nication, Adaptive systems, Recursive estimation

1. INTRODUCTION

This paper presents techniques for use in the context of online train-
ing of Gaussian Mixture Vector Quantizer (GMVQ) systems. To
demonstrate the potential of such an approach, we consider it in
the context of speaker-dependent wideband speech spectrum coding.
Speaker-dependent systems have been used in a variety of speech
processing applications. Conventional approaches to speech coding
operate in a speaker-independent manner, employing a single coder
designed to work for any speaker. This conventional approach has
the advantage of simplicity: only one coder needs to be designed,
and the design can be carried out ahead of time using a single large,
multispeaker database. However, since the statistics of various coder
parameters vary widely from speaker to speaker, speaker-dependent
coding offers the promise of improved performance. The develop-
ment of the GMVQ system (see [1] and Fig. 2) provides a ex-
ible coding framework that is able to incorporate arbitrary source
statistics and distortion measures. This framework, then, enables the
study and implementation of speaker-dependent coding. In our re-
cent work (see [2]), we quanti ed the gains available in various com-
mon speech coder parameters; in particular, we found a gain of 4 bits
per frame can be achieved for the Line Spectral Frequencies (LSF).
However, since it is impractical to collect an example database of
every possible speaker ahead of time, the training process for a real
speaker-dependent system must instead be implemented in an on-
line fashion. One on-line training con guration of particular interest
is depicted in Figure 1. In this approach, both the encoder and de-
coder perform the training process in a synchronized way, eliminat-
ing the need to explicitly transmit speaker-dependent designs. How-

This research was supported by Micro Grants 05-033 and 06-174, spon-
sored by QUALCOMM Inc.

Block

Design

Buffer

StorageDecoder

DecoderEncoder

Design

Block

Storage

Buffer

Channel

Main

{x̂1, . . . x̂T}

θ

{x̂1, . . . , x̂T}

X̂

X̂

X
i

θ

Fig. 1. Synchronized Learning. This con guration avoids the use of
side information.

ever, in order for this approach to work, it is necessary to perform the
training on data that has been quantized (presumably by a speaker-
independent coder, or some other sub-optimal system). Also, it is
desirable for the training buffer size to be as small as possible. This
paper examines both of these issues in detail. First, however, a bit of
background on GMVQ is in order.

In order to realize speaker-dependent coding, we require a suf-
ciently general class of quantizers to represent the statistical vari-
ations between speakers. To this end, we utilize the GMVQ system
presented in [1] (see Figure 2). In addition to the ability to represent
reasonably arbitrary source statistics, this system has a number of
properties that make it attractive in the speaker-dependent context.
Chief among these is the parametric form of the coder design: only
a small number of rate-independent parameters are required to de-
scribe the coder. For a GMVQ of order M , operating in dimension
d, this consists of M(1 + d + d(d + 1)/2) − 1 scalar parameters.
Thus, the number of parameters that must be transmitted and stored
for each speaker is small, and independent on the rate of operation.
Note that the values ofM typically used in coding are in the range of
10-20, making it feasible to train entire speaker-dependent systems.

Standard training methods for the GMVQ system rely on the EM
algorithm. That is, a large database of example data is collected, and
then the EM algorithm is applied to provide a set of Gaussian Mix-
ture parameters, which can then be translated into parameters for the
GMVQ system (see [1]). However, this approach poses a number of
problems in the context of speaker-dependent coding. First, it may
be required to perform the training at a location remote from the

47851-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

Quantizer
Gaussian

...

Quantizer
Vector
M point

Quantizer
Gaussian

1

α̂1

μ̂1

Σ̂1

X̂1

X̂M

X̂X

M
μ̂M

Σ̂M

α̂M

Fig. 2. The Gaussian Mixture Vector Quantizer system. Each com-
ponent quantizer produces a Gaussian point density N(x|μm, Σm).
The parameters αm specify the proportion of codepoints allocated
to each component quantizer, resulting in an overall point density of∑M

m=1 αmN(x|μm, Σm).

end-user’s equipment, as in Figure 1. Such a training scheme would
necessarily have to rely on data that has already been quantized.
Problems associated with quantized training data in the context of
GMVQ are explored in the Section II, and a post-processing tech-
nique is presented to alleviate them. Then, the performance degra-
dation due to quantized training data is experimentally quanti ed as
a function of encoding rate. Next, the requirement of using a large
database may result in unacceptable storage requirements. To this
end, Section III considers a recursive learning technique, using the
Online EM algorithm ([3],[4]) and a learning schedule devised by
Sato ([5]). Recursive learning greatly reduces the storage require-
ments associated with the training process, with negligible impact
on performance. Section IV contains a discussion of the results.

2. LEARNING FROM QUANTIZED DATA

A number of issues arise when considering learning from quantized
data. First, since the learning process does not have access to clean
data, some performance degradation in the resulting design is ex-
pected. This loss, as a function of encoding rate, is quanti ed later
in this section. Another issue that arises in the context of GMVQ
results from the nature of the quantization error (as opposed to its
magnitude as such). To see this, recall that the GMVQ typically uti-
lizes scalar transform coders to implement the component Gaussian
coders. The covariance matrices of the individual Gaussians tend,
in practice, to be fairly oblong. This results in transform codebooks
that, at standard operating rates, lie in subspaces. That is, only a
single codepoint is allocated to the least signi cant transform di-
mension(s). Note that the entire GMVQ codebook does not lie in
a subspace, as the subspaces of each component Gaussian coder do
not typically coincide. Nevertheless, attempting to learn a GMVQ
of comparable order as was used to quantize the data results in each
component ”locking on” to a corresponding subspace. This leads
to a numerical instability wherein the covariances shrink without
bound, derailing the learning process.

To circumvent this problem, a postprocessing can be applied to
the quantized data before it is utilized in the learning process. This
postprocessing consists of adding Gaussian noise to the quantized
data in order to ensure that the data has full rank. Speci cally, noise

is added only to those coef cients of the (transformed) quantized
vector which lie in a subspace (i.e., the dimensions which received an
allocation of 1 codepoint). The encoder-decoder pair for a transform
coder with postprocessing is illustrated in Figure 3. The variance of
the noise for each coef cient is set according to the GMVQ used to
quantize it. Note that this postprocessing should not be applied to
the actual output of the quantizer in the operational speech coder, as
it amounts to adding extra noise: it is only intended to be applied to
data for use in the learning process.

In order to demonstrate the effectiveness of the postprocessing
scheme, and to quantify the loss due to learning on quantized data,
a set of experiments on LSF quantization were performed. These
experiments were similar to those used in [2], relying on a database
of 45 speakers. For each speaker, a training set of 16-th order wide-
band LSF parameters was computed, as well as an independent test
set. A subset of each speaker’s training set was then used to con-
struct a speaker-independent training set. In this experiment, the
rst step was to train a speaker-independent GMVQ using the clean
speaker-independent training set via the usual EM algorithm, with
M = 16. Then, the training set for each speaker was quantized
using the resulting speaker-independent GMVQ in order to provide
a quantized training set. Postprocessing as shown in Figure 3 was
then employed to ensure that the quantized data was full rank (ev-
ery cluster had at least one dimension with an allocation of 0 bits).
Then, a speaker-dependent GMVQ was trained for each speaker by
using the EM algorithm on the quantized training sets, again with
M = 16. In order to characterize the effects of the encoding rate
upon the learning process, the training process was carried out re-
peatedly using a wide variety of quantization rates. The results are
illustrated in Figure 4. Note that the operating point for transpar-
ent quality (around 40 bits) incurs about 1 bit per frame of penalty,
and lies in a steep section of the performance curve, which is to say
that large gains in the performance of speaker-dependent systems
can be obtained by increasing the bit rate during training. As the
training rate approaches 70-80 bits per frame, the slope levels off.
This re ects the fact that such rates are suf ciently large as to make
postprocessing unnecessary (i.e., all components of all clusters are
allocated at least 1 bit). On the other hand, at very low rates, only
a small improvement is possible. In this regime, many components
of every cluster receive allocations of 0 bits, and so postprocessing
is applied to a large proportion of the components. Since the post-
processing is based on the speaker-independent model, it imposes,
to some degree, the speaker-independent statistics onto the training
data, resulting in performance very close to the speaker-independent
case. Moreover, this curve suggests that it may be bene cial to boost
the quantization rate during training, in order to avoid performance
penalties. If the rate at which LSFs are coded can be doubled for a
time, models trained on quantized data will show very little loss. If
desired, this temporary increase in rate could be accomplished with-
out raising the overall rate of the coder by rededicating bits from, say,
the xed codebook during the LSF learning phase. While this would
result in degraded audio quality during the training phase, it would
also result in a much better speaker-dependent model once training
was completed (at which time, the normal bit allocation could be
restored).

3. RECURSIVE LEARNING

Usual training strategies for GMVQ assume that the training process
has access to a suitably large database of training data, to which the
standard EM algorithm is then applied. However, it may be that the
requirement of storing a speaker-dependent database is prohibitive in

4786

.

..
.
..

.

.

+

USQ

USQ
+

.
X

μ

TT

μ

X̂

ẑd

ẑd−1zd−1

ẑ1z1

gd−1(yd−1)

g1(y1)

ŷd

ŷd−1

ŷ1y1

yd−1

g−1
d (ẑd)

g−1
d−1(ẑd−1)

g−1
1 (ẑ1)

U(0, 1)

T

Fig. 3. Transform coder with decoder modi ed for use in learning. In this example, the d-th transform component received an allocation of
0 bits; all other components are coded as normal. The functions gi are the compressor functions (i.e., cdf’s of Gaussians), the ”USQ” blocks
are uniform scalar quantizers (on [0, 1]) and the U(0, 1) block is a random number generator, uniformly distributed on [0, 1].

0 20 40 60 80 100
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Training Rate (bits per frame)

LS
D

 (d
B

)

Fig. 4. Performance of Speaker-Dependent LSF Quantizers Trained
on Quantized Data, as a function of bit rate. The dashed line shows
the performance of speaker-dependent systems trained on clean data,
while the dotted line shows speaker-independent performance. All
of the systems illustrated operated at a rate of 38 bits per frame.

the context of online learning (for example, if the learning process is
to be performed by the end-user’s equipment). In these cases, recur-
sive learning can be employed, wherein the learning process utilizes
only a single frame at a time, resulting in a sequence of parameter
estimates. Such a scheme has very low storage requirements, need-
ing only the current frame’s data, the parameters, and a few auxil-
iary variables used in the recursion. It can also provide for adaptive
operation. In such a case, the training process would continue indef-
initely, allowing the coders to track changes in the speaker or acous-
tic environment. In the context of learning a GMVQ, the Recursive
EM algorithm can be employed for this purpose. This algorithm,
presented by Titterington in [3] and [4], is based on Stochastic Ap-
proximation. That is to say, the parameter estimate at time step n
takes the form:

θ(n) = θ(n− 1) + η(n)T−1(n)

[
∂

∂θ
log fθ(xn)

]
θ=θ(n−1)

(1)

where η(n) is a step-size parameter and T (n) is a conditioning
matrix. Given certain technical conditions, stochastic approxima-
tion theory guarantees that such an estimator is consistent. In par-
ticular, it is required that

∑
n

η(n) = ∞ and
∑

n
η2(n) = 0, i.e.,

η(n) = o(1
n
). Beyond its effects on consistency, the choice of T (n)

determines the relative asymptotic ef ciency of the estimation proce-
dure, with optimal performance achieved by employing the Fischer
Information matrix (i.e., the Hessian of the log-likelihood). How-
ever, in nontrivial problems such as estimation of the parameters of
a multivariate GMM, it is very expensive to compute and, partic-
ularly, invert the Fischer Information. A popular alternative, then,
is to use the ”complete-data” Fischer Information matrix, which is
much simpler to compute and invert, although it results in decreased
relative ef ciency. This is referred to as the Recursive EM Algo-
rithm, and results in the following update procedure for the case of
GMM:

rmn ∝ αm(n− 1)N(xn|μm(n− 1), Σm(n− 1)) (2)
αm(n) = (1− η(n))αm(n− 1) + η(n)rmn (3)

= τmn + ρmn (4)

μm(n) =
τmnμm(n− 1) + ρmnxn

τmn + ρmn

(5)

Σm(n) =
τmnΣm(n− 1) + τmnρmn

τmn+ρmn

〈xn − μm(n− 1)〉

τmn + ρmn

(6)

where 〈.〉 denotes the outer product and τmn can be thought of
as the ”prior strength” assigned to them-th old estimate (as of time
n − 1) and ρmn represents the new information for cluster m at
time n. Notice the similarity between these recursions and the ex-
pressions that arise in Sequential MAP estimation of a GMM with a
complete-data conjugate prior (see [6]). In the case that η(n) = 1

n
,

then, the two approaches are equivalent. However, as will be seen
shortly, other choices of η(n) are more appropriate to the recursive
learning problem, in which case the equivalence with MAP estima-
tion does not apply. Also note that the inverse and determinant of
Σm(n) will also be required in order to compute rmn at the each
time step. Because the update toΣm in Eq. (6) is a rank-one update,
these quantities can be ef ciently computed in a recursive manner
by applying the Matrix Inversion Lemma (see [7] for details).

The last issue to determine is the schedule of the stepsize η(n).
The simplest approach is simply to utilize η(n) = 1

n
. This approach

is useful in, for example, adaptive settings wherein a good estimate
is already available, and it is desired to update it using new data

4787

(c.f. [8]). In such a scenario, the ”prior weight” given to the initial
estimate is quite high, and a small stepsize is desired. Thus, a 1

n

schedule, starting at some fairly large n0 is appropriate. However, in
”from scratch” estimation problems, the simple 1

n
schedule suffers

from its sensitivity to early data. That is, during the early stages
of estimation, when the old parameter estimate is very inaccurate,
employing a 1

n
schedule typically causes the estimation procedure to

diverge. To avoid this problem, one can employ a modi ed learning
schedule as suggested by Sato in [5]:

η(n) =

(
n∑

t=1

n∏
s=t+1

λ(s)

)
−1

(7)

λ(n) = 1−
1

(n− 2)γ + 1
ε0

(8)

where λ(n) is a ”forgetting factor,” whose schedule is parame-
terized by γ, which controls the asymptotic decay rate of η(n), and
ε0, which sets the initial length of the ”memory window.” Notice that
η(n) can be computed recursively:

η(n) =
1

1 + λ(n)
η(n−1)

(9)

Thus, in this approach, the stepsize schedule is separated into
three regions. In the range 1 < n < 1

ε0
, a rough (but reliable)

estimator is formed using a short memory window. In the second
phase, 1

ε0
< n < 1

γε0
, learning is carried out with a window length

of 1
ε0
(i.e., η(n) ≈ 1

ε0
). In the nal phase, η(n) decays as γ+1

γn
,

resulting in the asymptotic results from stochastic approximation.
In our experiments on learning of speaker-dependent GMVQs

for LSF quantization, we found that the values γ = 0.05 and ε0 =
0.001 resulted in reliable estimation. The learning curves for this
problem, averaged over all 45 speakers, are seen in Figure 5. Note
the small disparity between the likelihood performance and the ac-
tual quantization performance. This results from the assumption that
the inertial pro le of the quantizers is independent of the parameters,
which is not really accurate. This is not a major impediment, in that
the variation in the inertial pro le is small compared to the changes
in likelihood that are achieved.

4. DISCUSSION

This paper has presented two techniques for use in online training
of GMVQ systems. First, learning from quantized data was consid-
ered. This technique enables the learning process to be carried out at
locations remote from the encoder (and, hence, the end-user’s equip-
ment). The key to learning GMVQ systems from data quantized by
other GMVQ systems is to apply a post-processing to the decoded
data which avoids the problem of quantized outputs lying in sub-
spaces. The impact on the performance of the resulting GMVQs
as a function of the encoding rate was quanti ed, and shown to be
around 1 bit per frame for standard ”transparent quality” operating
rates. Next, recursive learning was considered. This learning tech-
nique replaces the standard batch EM approach to GMVQ learning
with a frame-by-frame approach which has minimal storage require-
ments. It was demonstrated that a suitable choice of learning sched-
ule results in performance equivalent to that obtained by batch EM
methods, implying that there is effectively no penalty to using recur-
sive learning. Taken together, these two techniques enable a wide
variety of online training con gurations, in that they eliminate the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

54

55

56

57

A
ve

ra
ge

 L
og

 L
ik

el
ih

oo
d

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

1

1.05

1.1

1.15

Number of Frames Processed

LS
D

 (d
B

)

(b)

Fig. 5. Convergence of Online EM Algorithm. Sub gure (a) shows
the average log likelihood while sub gure (b) depicts the average
Log Spectral Distortion. The dashed lines show the performance of
speaker-dependent systems trained using batch methods, while the
dotted lines show speaker-independent performance. Note that the
nal performance achieved by the recursive procedure is within 1/4
of a bit per frame of the batch learning performance.

need to carry out the training in the end-user’s equipment (by using
quantized data) and remove onerous storage requirements associated
with batch EM training.

5. REFERENCES

[1] A. D. Subramaniam and B. D. Rao, ”PDF Optimized Parametric
Vector Quantization of Speech Line Spectral Frequencies” IEEE
Trans. on Speech and Audio Proc., Vol. 11, (no.2), March 2003.

[2] E. R. Duni and B. D. Rao, ”Performance of Speaker-Dependent
Wideband Speech Coding” INTERSPEECH 2007, Anwerp,
Belgium.

[3] D.M. Titterington, ”Recursive Parameter Estimation using In-
complete Data” J. R. Statist. Soc. B, vol. 46, no. 2, pp. 257-67,
1984.

[4] D.M. Titterington and J-M. Jiang, ”Recursive Estimation Pro-
cedures for Missing-Data Problems” Biometrika, vol. 70, no. 3,
pp. 613-24, 1983.

[5] M. Sato, ”Fast Learning of On-Line EM Algorithm” Unpub-
lished manuscript.

[6] J.-L. Gauvain and C.-H. Lee, ”Maximum a Posteriori Estima-
tion for Multivariate Gaussian Mixture Observations of Markov
Chains” IEEE Trans. on Speech & Audio Proc., vol. 2, no. 2,
April 1994.

[7] E. R. Duni, ”High-Rate Optimized Quantization Structures and
Speaker-Dependent Wideband Speech Coding” Ph.D. Thesis,
University of California, San Diego, 2007.

[8] P-J. Chung and J. F. Bohme, ”Recursive EM and Sage-Inspired
Algorithms With Application to DOA Estimation” IEEE Trans.
on Signal Proc., Vol. 53, no. 8, Aug. 2005.

4788

