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ABSTRACT

Gaussian Mixture Model (GMM)-based predictive coding of

line spectral frequencies (lsf’s) has gained wide acceptance.

In such coders, each mixture of a GMM can be interpreted

as defining a linear predictive transform coder. In this pa-

per we optimize each of these linear predictive transform

coders using Kalman predictive coding techniques to present

GMM Kalman predictive coding. In particular, we show how

suitable modeling of quantization noise leads to an adaptive

a-posteriori GMM that defines a signal-adaptive predictive

coder that provides superior coding of lsfs in comparison

with the baseline GMM predictive coder. Moreover, we show

how running the Kalman predictive coders to convergence

can be used to design a stationary predictive coding system

which again provides superior coding of lsfs but now with no

increase in run-time complexity over the baseline.

Index Terms— speech coding, vector quantization,

Kalman filtering, Gaussian Mixture Models

1. INTRODUCTION
In recent years, Gaussian Mixture Model-based vector quan-

tization (VQ) of speech signal parameters has received much

attention. With a GMM providing an empirical probability

density function (pdf) of vector data such as Line Spectral

Frequencies (LSFs), various VQ methods are possible. In

particular, [1] utilized high-rate theory to investigate recur-

sive GMM-based VQ, while [2] presented a low-complexity

recursive GMM-based VQ, in which each component Gaus-

sian can be interpreted as a predictive transform coder.

Given that Kalman filtering principles [3] have previously

been utilized within predictive coding of speech (e.g., [4, 5]),

a natural question is whether Kalman filtering principles can

be utilized within the context of GMM-based VQ. In this

paper, we present GMM Kalman predictive coding (GMM-

KF) of lsfs. With Kalman filtering providing a framework

for quantization noise modeling and error covariance matrix

updating, we demonstrate how an a-posteriori GMM based

on past signal measurements can be utilized to perform pre-

dictive coding. In particular, the GMM-KF’s ability to adapt

This work was supported in part by the National Science Foundation via

Awards CCF-0347229, and CNS-0519933.

the coding model to the previous signal measurements leads

to better lsf modeling performance than that provided by a

standard GMM recursive coder (GMM-RC) or memoryless

coder. Moreover, we demonstrate a method for obtaining

a low-complexity stationary GMM Kalman predictive coder

(stationary GMM-KF) which also provides better lsf model-

ing performance.

The rest of this paper is organized as follows: Section

2 considers a state space model of GMM coding; Section 3

presents both the online and stationary GMM-KF; Section 4

presents simulations; Section 5 presents conclusions.

2. STATE SPACE MODEL OF A GMM CODER

Let Xk be a d-dimensional source vector at the time instant

k, and Yk,p be the concatenation of p previous source vectors,

i.e., Yk,p = [X ′
k−1, ..., X

′
k−p]

′.
Given a joint GMM of Xk and Yk,p one can write

the conditional GMM of Xk given Yk,p as pX|Y (x|y) =∑L
i=1 αipi(x|y). The component pdf pi(x|y) has the condi-

tional mean μi,k|k−1 = mi,X+Ci,XY C−1
i,Y Y (yk−1 − mi,Y ),

and conditional covariance Qi = Ci,XX−Ci,XY C−1
i,Y Y Ci,Y X

[2]. The conditional mixture probabilities αi are given by,

αi = ρipi(y)
pY (y) . In the GMM-RC, each Gaussian conditional

density pi(x|y) defines a transform coder, with each coder

competing to produce the best quantized value of a vector Xk

given p past quantized values Yk,p. A standard GMM-RC up-

dates its a-posteriori coder probabilities αi, but does not adapt

the pi(x|y) themselves. To utilize Kalman filtering principles,

which engender quantization noise modeling and coder adap-

tation, we now take each pi(x|y), and define a linear plant

model, and measurement model which captures the transform

coding process. Utilizing standard Kalman filtering notation

[3], let us define the state vector xk which consists of p source

vectors, given by xk =
[

Xk . . . Xk−p+1 1
]′

.
Given xk, for each pi(x|y), we associate a linear model

xk+1 = Fixk + wi (1)

zi,k = Hi,kxk + vi,k, (2)

The state prediction matrix Fi of the ith coder is selected

such that the predicted state becomes the conditional mean
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μi,k|k−1 of the ith coder, i.e.,
⎡
⎢⎢⎣

Ci,XXC−1
YY (dxdp)

mi,X − Ci,XX×
Ci,Y Y mi,Y (dx1)

I(d(p−1)xd(p−1)) 0(d(p−1)xd) 0(d(p−1)x1)

0(1xdp) 1(1x1)

⎤
⎥⎥⎦ . (3)

The fixed ‘1’ as the last element of xk is used to accommo-

date the fixed mean components in pi(x|y). Noting that wi

represents the plant noise of the linear model (1). we define

the covariance E[w′
i,k, wi,k′ ] = Qiδk,k′ , we set the top left

d × d submatrix of Qi to be �Qi�d×d = Qi with the other

elements of Qi set to zero.

Suppose that the ith coder at time k − 1 has a state

vector x̂i,k−1|k−1. To predict the signal state xk at time k

based on the information at time k − 1, the ith coder forms

x̂i,k|k−1 = Fix̂i,k−1|k−1. The elements of the prediction er-

ror xk − x̂i,k|k−1 are transformed and quantized, and further

processed to create the ith coder’s best representation of the

current state. This is modeled by (2) in which the ith coder

observes noisy measurements of the true state xk. To see this,

we define the prediction error covariance matrix

Σi,k|k−1 = E([xk − x̂i,k|k−1]′[[xk − x̂i,k|k−1]]) (4)

which models the prediction error statistics. To be consis-

tent with the standard GMM-RC, suppose that only the first

d elements of xk − x̂i,k|k−1 corresponding to the error be-

tween the current d × 1 source vector and the prediction

are quantized. Then denote the top left d × d submatrix of

Σi,k|k−1 as �Σi,k|k−1�d×d. We perform an eignendecom-

position �Σi,k|k−1�d×d = Ui,kΛi,kU ′
i,k, and set Hi,k =

[U ′
i,k 0d×(d(p−1)+1)]. Then observe that Hi,k(xk − x̂i,k|k)

is the Karhunen-Loeve transform (KLT) of the first d val-

ues of the ith coder’s state prediction error at time k. Let

the ith coder’s KLT be ψi,k = Hi,k(xk − x̂i,k|k−1) while

ψ̂i,k = ψi,k + vi,k is the quantized KLT where vi,k is the

quantization noise.

Now reconsider the measurement equation (2). Through

quantization, the ith coder is observing noisy measurements

of the true state xk. Let us relate this to the standard GMM-

RC. Suppose the ith coder denotes its quantized state vector

at time k as x̂i,k|k. Then see that in the standard GMM-RC,

the ith coder’s candidate quantization of the source vector is

given by x̂i,k|k = x̂i,k|k−1 + H
′
i,kψ̂i,k which we can re-write

as x̂i,k|k = x̂i,k|k−1 + H
′
i,k(zi,k − Hi,kx̂i,k|k−1). Then in

a standard GMM-RC, each coder forms its competitive can-

didate x̂i,k|k, with the best candidate coder i∗ selected, and

the corresponding quantization information transmitted. Then

x̂i∗,k|k is used to update a common state xk|k which is utilized

by each coder in its prediction step. In the standard GMM-

RC, except for the coder conditional probabilities, the coder

model parameters are not updated.

From a Kalman filtering perspective, the standard GMM-

RC can be improved in several respects. In particular, by ap-

propriately modeling the statistics of the quantization noise

vi,k in the measurement equation, one can form the filtered

state x̂i,k|k = x̂i,k|k−1 + Ki,k(zi,k −Hi,kx̂i,k|k−1) by utiliz-

ing the Kalman gain Ki,k. Moreover, one can utilize the noisy

measurement zi,k to form the filtered error covariance ma-

trix Σi,k|k which is subsequently utilized to form Σi,k+1|k =
FiΣi,k|kF ′

i + Qi, which in turn is utilized to update the KLT

matrix Hi,k+1. Therefore, the normal prediction, measure-

ment, filtering, update cycle of a Kalman filter can be utilized

to update the coder parameters of the L models based on the

noisy measurements. This leads to more accurate tracking of

the signal evolution and consequently more effective quanti-

zation. Let us consider how to apply Kalman filtering princi-

ples to this state-space model.

3. GMM-KALMAN PREDICTIVE CODER

Consider coding with the a-posteriori conditional GMM

p(xk|Zab
k ) =

L∑
j=1

P (Mj,k|Zab
k )p(xk|Mj,k, Zab

k ), (5)

where Zab
k = [zab

1 , · · · , zab
k ] denotes the set of common ab-

solute measurements available to all coders, P (Mj,k|Zab
k ) de-

notes the probability of coder j at time k given the past mea-

surements Zab
k . Then p(xk|Mj,k, Zab

k ) is the jth coder’s con-

ditional Gaussian pdf of xk given Zab
k , with mean x̂j,k|k, and

covariance Σj,k|k. Given this conditional GMM, each con-

ditional Gaussian p(xk|Mj,k, Zab
k ) defines a particular trans-

form coder. The GMM-KF follows a 1) competition 2)update

cycle. In the competition cycle, each transform coder forms

a candidate quantization of the current source vector, and in

the update cycle, both the selected and non-selected coder pa-

rameters are updated using a common absolute measurement

related to the selected coder’s measurement. First, let us con-

sider the competition in step 1.

The key for each coder is to model vi,k. Suppose we let

Ri,k = E[vi,k, v
′
i,k]. Recall that with Hi,k obtained from an

eigendecomposition of Σi,k|k−1, the KLT of the prediction

error, ψi,k = Hi,k(xk − x̂i,k|k), is quantized. Rather than

assuming the quantization scheme of [2], let us assume that

each element of the vector ψi,k is divided by the square root of

the corresponding eigenvalue from Λi,k, i.e., we form a vector

Γi,k with row l consisting of γl
i,k = [ψl

i,k]/
√

λl
i,k. Then Γi,k

can be viewed as a vector of uncorrelated Gaussian random

variables with unit variance.

Consequently, each element of Γi,k is independently

quantized by a Max scalar quantizer [6] with element l quan-

tized using bl
i,k bits. Then the quantization noise covari-

ance is written as E[vi,kv′i,k] = Δi,kHi,kΣi,k|k−1H
′
i,k. The

noise factor matrix Δi,k is a diagonal matrix with elements

((σ1
i,k)2, · · · , (σd

i,k)2) where the terms σl
i,k is determined by

the noise factor of a bl
i,k bit Max quantizer [6].

Given this modeling of the quantization noise, how are

Kalman filtering recursions performed? If we assume that
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in the quantization of Γi,k, that the quantization noise values

along each dimension are uncorrelated, then by the centroid

condition of scalar quantizers, we can show that

E(ψi,kv′i,k) = −E(vi,kv′
i,k) (6)

With this correlated noise assumption, the candidate Kalman

Gain and filtered error covariance update equations are [5]

Ki,k = Σi,k/k−1H
′
i,k(Hi,kΣi,k/k−1H

′
i,k)−1 (7)

Σi,k|k = Σk|k−1 − Ki,k(I − Δi,k)Hi,kΣi,k|k−1. (8)

Therefore, each coder forms candidate quantized values

x̂i,k|k = x̂i,k|k−1 + Ki,k(zi,k − Hx̂i,k|k−1). The coder i∗,

which minimizes ‖xk − x̂i,k|k‖2 (or alternatively log spec-

tral distortion (LSD)) is chosen as the selected coder. Thus,

only the quantization information of the selected coder i∗ is

transmitted. Then the selected coder can form its predicted

covariance matrix Σi∗,k+1|k from its Σi∗,k|k in (8), and pre-

pare to enter the competition to quantize xk+1 by computing

Hi∗,k+1. However, the coders j �= i∗ that were not selected

cannot use the updates in (7) and (8), as these equations are

posited on the coder j actually being selected. Therefore, we

need to consider two problems: (1) How are the non-selected

coder parameters of p(x(k)|Mj,k, Zab
k ) updated? (2) How

are the coder probabilities P (Mj,k|Zab
k ) updated?

3.1. Updating Non-Selected Coders

The selected coder i∗ observes the measurement z∗i∗,k =
H∗

i∗,kxk + vi∗,k at time k within the frame of reference

of its transform coder. To proceed, we convert z∗i∗,k into an

absolute frame of reference by forming the common absolute

measurement zab
k observed by all the non-selected coders,

zab
k = H∗′

i∗,kz∗i∗,k = xk + H∗′
i∗,kvi∗,k. (9)

Then the j �= i∗ coder can calculate its Kj,k and Σj,k|k
through zab

k , in which we view H∗′
i∗,kvi∗,k as an uncorre-

lated noise [5] since v∗,k is from coder i∗ �= j. Now suppose

that each j �= i∗ converts zab
k to its own frame of reference by

forming local measurements

z̃j,k = Hj,kzab
k = Hj,k(xk + H∗′

i∗,kvi∗,k). (10)

We can easily show that for coder j �= i∗ the use of its local

measurement z̃j,k instead of zab
k results in the same Σj,k|k

and Kj,k. To find these parameters, we follow the standard

procedures in [3]. After finding the joint conditional statistics

of [x
′
k, z̃j,k], we can use properties of conditional Gaussian

random variables to find

Kj,k = Σj,k|k−1H
′
j,k(Ωj,k)−1

Σj,k|k = Σj,k|k−1 − Σj,k|k−1H
′
j,k(Ωj,k)−1Hj,kΣj,k|k−1

Ωj,k = Hj,kΣj,k|k−1H
′
j,k + Hj,kH∗′

i∗,kRi∗,kH∗
i∗,kH ′

j,k

Then x̂j,k|k = x̂j,k|k−1 + Kj,k(z̃j,k − Hj,kx̂j,k|k−1) results

in a different filtered state for each of the L coders.

3.2. Updating coder probabilities

Now consider updating P (Mj,k|Zab
k ). By Bayes’ rule,

p(x(k)|Zab
k ) =

L∑
j=1

p(x(k)|Mj,k, Zab
k )

× p(zab
k |Zab

k−1,Mj,k)P (Mj,k|Zab
k−1)∑L

i=1 p(zab
k |Zab

k−1,Mi,k)P (Mi,k|Zab
k−1)

(11)

For the likelihood value p(zab
k |Zab

k−1,Mj,k), we can show

p(zab
k |Zab

k−1,Mj,k) = N [z̃j,k − Hj,kx̂j,k|k−1,Ωj,k] (12)

where N [z̃j,k−�, Ξ] denotes a Gaussian pdf with mean � and

covariance Ξ. Now, by substituting (12) into (11) we get,

p(x(k)|Zab
k ) =

L∑
j=1

p(x(k)|Mj,k, Zab
k )

× αj,k−1 N [z̃j,k − Hj,kx̂j,k|k−1,Ωj,k]∑L
j=1 αj,k−1 N [z̃j,k − Hj,kx̂i,k|k−1,Ωj,k]

Defining αj,k = P (Mj,k|Zab
k ), we then see that

αj,k =
αj,k−1 N [z̃j,k − Hj,kx̂j,k|k−1,Ωj,k]∑L

j=1 αj,k−1 N [z̃j,k − Hj,kx̂i,k|k−1,Ωj,k]
. (13)

To avoid coder probabilities from becoming unrealistically

skewed, we adopt a rescaling strategy in which we set αj,k =
ρj , (the initial probabilities) if the smallest coder probability

is less than a constant, i.e., αjmin,k < αmin.

Therefore, in the online GMM-KF, each model i uses its

filtered state x̂i,k−1|k−1 to form a candidate quantization of

the current source vector. The selected coder i∗ transmits the

quantization information, and the corresponding model de-

coder i∗ forms the noisy measurement which is used with the

Kalman recursions to form x̂i∗,k|k. The non-selected coders

at both the sender and destination update their models as il-

lustrated above, and then the αj,k−1 values are updated, along

with the bit allocations that follow [2]. Therefore, the online

GMM-KF allows for an a-posteriori GMM to adaptively track

the signal evolution, leading to more effective quantization.

3.3. Stationary GMM Kalman Predictive Coder

The online GMM-KF is computationally expensive in that for

each iteration, each coder must perform eigendecompositions

to obtain parameters for the KLT and bit allocations. How-

ever, for a fixed total bit-rate, we can run the online GMM-KF

over a representative test file for a number of iterations (1000

in this paper) until the Kalman gain and covariance matri-

ces for each coder converge to stationary values, leading to a

stationary GMM-KF. In contrast to the online coder, the sta-

tionary coder utilizes a fixed KLT since the error covariance

matrix is fixed. Only the a-posteriori coder probabilities and

the new bit-allocations need to be calculated in each iteration.

Therefore, the stationary GMM-KF is essentially of the same

computational complexity as the standard GMM-RC.
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Table 1. GMM-KF Coder performance comparison (lossless

channel)
GMM-KF GMM-RC NRC

Bit SNR LSD SNR LSD SNR LSD

20 39.98 0.8296 38.65 0.9254 37.54 1.1020

25 42.63 0.5731 40.94 0.6756 40.11 0.8290

30 45.23 0.4222 44.64 0.4732 42.99 0.6012

35 48.02 0.3209 47.64 0.3643 45.71 0.4401

Table 2. Stationary GMM-KF Coder performance compari-

son (Lossless Channel)
GMM-KF GMM-RC NRC

Bit SNR LSD SNR LSD SNR LSD

20 39.63 0.8315 38.65 0.9254 37.54 1.1020

25 42.46 0.6052 40.94 0.6756 40.11 0.8290

30 45.16 0.4443 44.64 0.4732 42.99 0.6012

35 47.93 0.3207 47.64 0.3643 45.71 0.4401

Table 3. Stationary GMM-KF Coder performance compari-

son (channel loss 5% without feedback)
GMM-KF GMM-RC NRC

Bit SNR LSD SNR LSD SNR LSD

20 33.99 1.3938 30.33 1.8056 33.42 1.3609

25 34.73 1.1605 29.22 1.8731 33.42 1.1551

30 35.16 0.9706 28.96 1.7974 34.09 0.9410

35 35.38 0.8652 27.63 1.9518 32.81 0.8788

4. SIMULATIONS

We compare the performance of both the online and stationary

GMM-KFs to a baseline GMM-RC as well as a memoryless

GMM non-recursive coder (NRC) in lsf quantization. A 16

mixture GMM was trained on 400,000, dimension d = 10
lsf vectors from the DARPA TIMIT database. Testing was

performed on a separate set of 30,000 lsf vectors. For both

predictive coders, p = 1, meaning that the state vector is only

of dimension d.

4.1. Online GMM Kalman Predictive Coder

Table 1 shows performance under lossless channel conditions,

with both LSD and SNR shown. In the figures, one can see

that the online GMM-KF consistently provides both better

LSD and SNR performance than either the GMM-RC or NRC

cases. The improvement in SNR is noteworthy, as the GMM

Kalman predictive coding principles described in this paper

are applicable to a wide variety of signals.

4.2. Stationary GMM-Kalman Predictive Coder

The comparisons between the stationary GMM-KF and the

baseline GMM-RC and NRC can be seen in Table 2 for a

lossless channel. The stationary GMM-KF provides better

performance both in terms of SNR and LSD than the baseline

coders. This is particularly noteworthy as the stationary coder

has roughly the same complexity as the baseline GMM-RC.

Table 4. Stationary GMM-KF Coder performance compari-

son (channel loss 10% without feedback)
GMM-KF GMM-RC NRC

Bit SNR LSD SNR LSD SNR LSD

20 31.97 1.7136 27.99 2.4975 31.47 1.6117

25 32.40 1.4990 27.32 2.6045 31.12 1.4686

30 32.59 1.3525 26.95 2.5704 31.56 1.2627

35 32.72 1.2653 25.93 2.8444 30.37 1.2570

The Stationary GMM-KF and the baseline coders are

tested with packet loss conditions without feedback. With

packet loss, the GMM-KF propagates its predictions as the

measurements, and combines all the coder measurements for

packet loss concealment (PLC). The baseline coders utilize

suitably combined predictions from the RC models to per-

form PLC. The comparisons are given in Tables 3 and 4 for

packet loss rates of 5%and 10% respectively. In both cases,

the stationary GMM-KF outperformed the baseline GMM-

RC as the GMM-KF’s a-posteriori coder probabilities are

conditioned on all measurements, while the GMM-RC prob-

abilities are only conditioned on the last quantized value. The

GMM-KF and the GMM NRC provided nearly the same per-

formance in terms of LSD for the packet loss case, with the

NRC providing a very slight advantage. However, in terms of

SNR, the stationary GMM-KF provided better performance

than the NRC. Therefore, the stationary GMM-KF presents

attractive lsf quantization abilities at low complexity.

5. CONCLUSION
In this paper, we have shown how suitable modeling of quan-

tization noise within a state-space framework leads to an

adaptive a-posteriori GMM that defines a signal-adaptive

predictive coder that provides superior coding of lsfs in com-

parisons with a baseline GMM-RC. Moreover, we show how

one can obtain a stationary GMM-KF coder which also pro-

vides better coding of lsfs than a regular GMM-RC without

any increase in complexity.
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