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ABSTRACT

This paper describes a simple method for significantly im-
proving Tandem features used to train acoustic models for
large-vocabulary speech recognition. The linear activations
at the outputs of an MLP classifier were modified according
to known reference labels: where necessary, the activation of
the output unit corresponding to the correct phone label was
increased in order to make an accurate classification. This
technique was inspired by another experiment that determined
a lower error bound on ASR performance within the Tan-
dem framework. By simulating an idealized classifier with
forward-backward phone posterior probabilities, we observed
a best-case scenario in which nearly all errors were elimi-
nated. Although this performance is not practically achiev-
able, the experiment demonstrated the validity of the Tandem
processing approach and suggested that considerable gains
are possible by improving the MLP phone classifier.

Index Terms— speech recognition, feature extraction,
multilayer perceptrons, Hidden Markov models

1. INTRODUCTION

The predominant and successful framework for automatic
speech recognition (ASR) utilizes Hidden Markov Models
(HMM) with Gaussian Mixture Models (GMM) parame-
terizing continuous distributions of acoustic features based
on a short-term spectral envelope. Tandem acoustic feature
extraction [1] was introduced to leverage the discriminative
power of a multi-layer perceptron (MLP) classifier, produc-
ing an alternative feature representation based on local esti-
mates of phone posterior probabilities. Such MLP-derived
features have been used for large-vocabulary ASR [2, 3],
complementing other discriminative methods such as MPE
parameter estimation [4] and fMPE feature transforms [5].
The feature extraction front-end can be decoupled from

sophisticated back-end modeling and decoding, so a system
designer can conveniently view Tandem processing as a mod-
ular unit to be optimized independently. To this end, we first
devised an exploratory experiment in which the MLP was
simulated to be at its optimum, providing essentially perfect
classification of phonetic speech units. The outputs of the

simulated classifier were replaced with forward-backward
probabilities by aligning HMM models composed from ref-
erence word sequences. Such idealized Tandem features
allowed for a tremendous gain in ASR performance; slight
procedural modifications virtually eliminated all errors.
Of course, while reference word transcriptions form part

of the labeled training data, they should not have been avail-
able for test data. To avoid cheating we therefore tried us-
ing the simulated classifier exclusively during training and
applied the normal MLP on test data. Surprisingly, this mis-
match did not deteriorate performance but instead provided
considerable improvement over the standard Tandem proce-
dure. Inspired by this result, we developed a simple technique
for preparing corrected Tandem features based on linear out-
put activations of an MLP, and demonstrated significant im-
provement on a Mandarin broadcast news ASR task.

2. MANDARIN BROADCAST NEWS ASR SYSTEM

Our experiments are based on the Mandarin broadcast news
ASR system described in [6], simpler than our state-of-the-
art implementation [7] developed as a multi-site collaboration
for the DARPA GALE project. SRI’s DECIPHER recognizer
was configured for word-based modeling, although all ASR
results are reported as character error rates (CER).
The training set (Mandarin Hub4) comprised 30 hours of

television shows, carefully transcribed including speaker la-
bels. Test data are from the DARPA EARS RT-04 evaluation
(eval04) and the DARPA GALE 2006 evaluation (eval06).
Automatically-segmented utterances were clustered and

assigned pseudo-speaker labels. Standard acoustic features
were based on mel-frequency cepstral coefficients, warped
with vocal tract length normalization and mean-and-variance
normalization applied on a per-speaker basis. Since Man-
darin is a tonal language, it was useful to additionally in-
clude a smoothed log-pitch estimate [6]. Adding two tempo-
ral derivatives resulted in a 42-dimensional acoustic feature
vector, which we will simply reference as “MFCC”.
Within-word triphone HMM models were based on a 72-

phone inventory comprising consonants and tonal vowels. Pa-
rameters were shared across 2000 states clustered with a pho-
netic decision tree, and observation distributions were mod-
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Fig. 1. Tandem feature extraction: a multi-layer percep-
tron estimates phone posterior probabilities, which are trans-
formed for better Gaussian modeling, then concatenated with
a standard ASR feature vector to serve as an HMM’s acoustic
observations. The softmax-logarithm transformation may be
omitted, using linear activations at MLP outputs.

eled by a diagonal covariance GMM with 32 mixture compo-
nents. Viterbi re-alignment of the training data was used for
maximum-likelihood parameter estimation.
Recognition networks were compiled from trigram lan-

guage models trained on over one billion words, with a 60K
lexicon [7]. Two decoding passes were separated by 3-class
MLLR speaker adaptation, all operating in under 5x real time.

3. TANDEM FEATURE EXTRACTION

Figure 1 depicts the general procedure for preparing Tandem
acoustic features. This section describes the specific configu-
rations used for experimentation.
The MLP input layer had 378 units, representing 9 con-

text frames of 42-dimensional features similar to those de-
scribed in the previous section – except based on PLP analy-
sis. Training examples were taken from an 870-hour corpus
of television broadcasts (flexibly aligned to closed-captioned
transcriptions [8]), mapping HMM states to 71 phone output
targets – excluding the reject phone. A fully-connected hid-
den layer of 15,000 units contained nearly 7 milion weights,
trained with a quasi-online backpropagation algorithm.
Applying a softmax nonlinearity at the MLP’s output

layer approximated Pmlp(Qt|Xt±4): the posterior proba-
bility distribution over phones Qt given the local acoustic
evidence Xt±4 centered at the current time t and its 8 neigh-
boring frames of temporal context. Subsequent conversion to
the logarithmic domain was intended to better Gaussianize
this distribution. The experiments in the Section 4 use the

Table 1. Comparison of Tandem features from two phone
classifiers: an idealized simulation and a trained MLP. Char-
acter error rate reported on the CCTV subset of eval04.

Feature Train Test CCTV CER
MFCC – – 11.7
Tandem MLP MLP 9.1
Tandem idealized MLP 8.6
Tandem idealized idealized 4.7

softmax transformation to enable a probabilistic interpreta-
tion; however, we have found it is generally better to use
the MLP outputs prior to this nonlinearity, as in Section 5.
Note that in both cases the MLP was trained using a softmax
nonlinearity to determine the cross-entropy error criterion.
Because the HMM-GMM acoustic models operated un-

der an assumption of diagonal covariance, a Karhunen-Loeve
Transform (Principal Components Analysis) was applied for
orthogonalization and also to rank and reduce the dimension-
ality to 32. The resulting vector of transformed MLP outputs
was then concatenated with the MFCC features described pre-
viously, resulting in a 74-dimensional Tandem feature.
Due to practical considerations, the HMM-GMM mod-

els used a relatively small training set compared to the MLP
training; in our experience, the gains due to MLP features are
still consistent – albeit smaller– when the HMM-GMM mod-
els are trained on the same amount of data as the MLP.

4. IDEALIZED TANDEM FEATURES

Our first experiment sought to determine a lower error bound
on ASR performance using Tandem features. Idealized Tan-
dem features were prepared by replacing the MLP outputs
(after softmax) with forward-backward phone posterior prob-
abilities to simulate a classifier with “perfect” accuracy.
To simulate this ideal phone classification, we defined the

outputs of the hypothetical classifier to be Pfb(Qt|X, Ŵ ):
the posterior probability distribution over phones Qt given
the entire acoustic utterance X and its corresponding word
transcription Ŵ . This was computed with forward-backward
HMM inference, where the model structure was defined by
composition of elementary phone models as specified by the
word sequence and a pronunciation dictionary. To avoid nu-
merical complications due to artificial zeros in the pruned
forward-backward distributions, we lightly interpolated with
the MLP-derived probability distribution:

Pideal(Qt|X, Ŵ )
.
= Pfb(Qt|X, Ŵ ) + 0.01Pmlp(Qt|Xt±4)

The MLP-derived distribution was chosen for interpolation to
introduce realistic errors rather than arbitrary noise.
The simulation of Pideal(Qt|X, Ŵ ) for idealized Tandem

features required forced alignment to the reference word tran-
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Table 2. Eliminating the MFCC concatenation and applying a
full-rank KLT orthogonalization improved idealized Tandem
features in a cheating scenario; however, the opposite effect
was observed for MLP-derived features.

Train & Test +MFCC KLT CCTV CER
MLP yes reduced 9.1

no reduced 9.2
no full-rank 9.7

idealized yes reduced 4.7
no reduced 3.4
no full-rank 1.8

scriptions. Due to difficulty in obtaining proper alignments
for all of the test data, in this section results are reported only
on the relatively easy CCTV subset of eval04. The MLP clas-
sifier was able to achieve 79.7% frame-level phone accuracy
on this data, scored relative to labels from aligned reference
transcriptions. The simulated “perfect” classifier achieved
99.2% accuracy, a less than perfect score due to slight discrep-
ancies between maxima of its forward-backward distributions
and the Viterbi-aligned reference labels.
Table 1 summarizes the results of our exploratory experi-

ment. Tandem features provided a gain in ASR performance
relative to standard MFCC features. The simulation of an ide-
alized classifier provided a very good result, albeit cheating
on the test data. Interestingly, the non-cheating scenario in
which idealized features were only used for training data was
better than the standard Tandem procedure, despite the ex-
pected negative effect due to mismatch of conditions.
In further experiments with idealized Tandem features, we

note that it was possible to achieve even better results for the
cheating scenario by slightly modifying the Tandem feature
extraction process. We eliminated the concatenation step, re-
moving the MFCC components from the Tandem feature vec-
tor. Then instead of a dimensionality reduction, we applied
a full-rank KLT orthogonalization. Table 2 shows that this
greatly decreased the ASR error for idealized Tandem fea-
tures derived from a simulated perfect classifier; however,
performance worsened when using a real MLP classifier.

5. CORRECTED TANDEM FEATURES

The experiments of the previous section demonstrated the
potential benefit of training acoustic models with idealized
Tandem features, for which phone posteriors from an MLP
(via softmax at the output layer) were replaced by forward-
backward probabilities. However, in our experience we often
find it best to use linear activations for the MLP outputs, so
it would be desirable to apply an analogous technique in this
situation. Yet it is not trivial to convert a forward-backward
distribution into a vector of simulated linear activations.

Table 3. Comparison of standard and corrected Tandem fea-
tures derived from an MLP’s linear output activations.

Feature Train Test eval04 eval06
MFCC – – 19.2 30.6
Tandem MLP MLP 15.5 24.2
Tandem corrected MLP 15.1 23.9

We resolved this with a simple technique for correcting
the linear activation outputs of an MLP. Using the Viterbi-
aligned reference labels for the training data, we determined
for each frame whether the MLP’s classification was correct.
If the MLP’s maximal output correctly related to the aligned
phone, we left all the outputs unmodified for that frame. If
the MLP’s classification was incorrect, we changed the value
at the output unit that should have had the maximal activa-
tion; we increased it to have the same value as the maximal
activation over the other output units. Unlike the preparation
for idealized Tandem features, this correction was a relatively
minimal modification to the MLP outputs: it was applied only
to frames which were incorrectly classified – about 20% of the
training set – and affected just one of the MLP output units.
Table 3 shows the experimental results using corrected

Tandem features for acoustic model training. For both the
eval04 and eval06 test sets, the corrected training features
provided modest improvement over the features from unmod-
ified MLP outputs. Over the two sets, the statistical signifi-
cance of the systems’ difference was verified by a two-tailed
MAPSSWE test [9]: p = 0.015 (179 vs. 135 unique errors).

6. DISCUSSION

6.1. Training with corrected Tandem features

The most important result in this work is the observation that
an ASR system using Tandem features was significantly im-
proved by applying a small correction to the training features.
The correction procedure is very simple to implement and

relies only on having Viterbi-aligned reference labels for the
training data; this information is often readily available as it
is typically used to prepare the one-hot encoded targets for
MLP training. By contrast, an alternative procedure using
forward-backward alignments – e.g. for preparing idealized
Tandem features – might require a considerable amount of
extra computation and storage space. This practicality of the
approach provides an easy way to improve existing systems
using MLP-derived features; we expect to soon demonstrate
results on larger systems and other tasks.
The method might be refined with a principled approach

to determine the magnitude of correction. Rather than arbi-
trarily increasing the correct activation to equal the maximal
activation, perhaps a larger increment would be better. How-
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ever, it is also possible that large corrections could exaggerate
the mismatch between the train and test features.

6.2. Towards perfect feature extraction

Our cheating experiments with idealized Tandem features
demonstrated that such an ASR front-end could reduce the
error rate as low as 1.8%. Analyzing this small amount of
remaining error, we determined that in half of the cases the
automatic utterance segmentation was directly responsible
for deletion errors – this problem in our system has since
been addressed [10]. We have therefore demonstrated that
virtually perfect ASR performance can be achieved with little
more than a front-end modification.
To claim that perfect features lead to perfect performance

may at first seem obvious, and some researchers have com-
mented that “if you put in the answer at the beginning, of
course you’ll get it back at the end”. However, this is pre-
cisely the objective of Tandem feature extraction: a frame-
work for easily exploiting a rich phonetic information stream
within the constraints of a very complicated system. That the
various manipulations of Tandem processing do not corrupt
the idealized input is a validation of the approach.
It is also telling that the standard Tandem procedure had to

be modified slightly in order to greatly reduce the error from
4.7% to 1.8% CER. In a general pattern recognition view, the
MFCC concatenation should add information and the KLT
reduction should remove noise. With idealized Tandem fea-
tures, however, the added MFCC components were noisy and
the truncated KLT dimensions were informative. Though not
currently applicable, this suggests that special considerations
might need to be examined when designing Tandem systems
with extremely accurate classifiers.
Lastly, these experiments might suggest alternative ap-

proaches for efficient ASR decoding, considering that the
MLP forward pass can be much faster than real-time. With
more accurate classifiers, it may be possible to utilize less
sophisticated back-end architectures for ASR; in experiments
with idealized features, we observed that performance did not
degrade even when the GMM models contained fewer mix-
tures and were trained on less data. Reviewers have suggested
another interesting experiment: to decode directly from the
idealized posteriors with a hybrid HMM/ANN system [11].

7. CONCLUSION

This paper has described a method to improve a large vocab-
ulary speech recognition system using corrected Tandem fea-
tures for acoustic model training. We also demonstrated a
hypothetical system using idealized Tandem features to de-
termine a bound on ASR performance within this framework,
indicating that further front-end improvements have the po-
tential to greatly benefit the overall system.
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