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ABSTRACT

Non-negative matrix factorisation (NMF) is an unsupervised learn-
ing technique that decomposes a non-negative data matrix into a
product of two lower rank non-negative matrices. The non-negativity
constraint results in a parts-based and often sparse representation
of the data. We use NMF to factorise a matrix with spectral slices
of continuous speech to automatically find a feature set for speech
recognition. The resulting decomposition yields a filter bank design
with remarkable similarities to perceptually motivated designs, sup-
porting the hypothesis that human hearing and speech production
are well matched to each other. We point out that the divergence
cost criterion used by NMF is linearly dependent on energy, which
may influence the design. We will however argue that this does not
significantly affect the interpretation of our results. Furthermore, we
compare our filter bank with several hearing models found in litera-
ture. Evaluating the filter bank for speech recognition shows that the
same recognition performance is achieved as with classical MEL-
based features.

Index Terms— Non-negative matrix decomposition, Unsuper-
vised learning, Speech analysis, Feature extraction, Auditory system

1. INTRODUCTION

The goal of this work is to automatically discover a feature set for
speech recognition by analysing continuous speech recordings, us-
ing only minimal knowledge about audiology or phonology. We
perform a non-negative matrix factorisation (NMF) of a data ma-
trix containing power spectra of continuous speech. Unlike classical
factorisation techniques like PCA, NMF generates a parts-based rep-
resentation of the data. There is psychological and physiological ev-
idence that human perception is often based on such representation
[1]. The individual parts found by NMF are usually sparse and must
be combined in an additive (not subtractive) linear combination.

Smaragdis [2] extended NMF to a technique known as ‘convo-
lutive NMF’ to find 2D spectro-temporal objects in speech spec-
trograms. These objects seem to be roughly related to phone in-
stances of speech. Lewicki [3] used time-domain ICA without non-
negativity constraints on short segments of natural sounds (including
speech) to find the underlying structure. The resulting filters show
a trade-off between localisation in time or in frequency, which is
qualitatively similar to the response properties of auditory fibers.

Our goal is to discover a small featureset which can immedi-
ately be plugged into state-of-the-art speech recognition systems. In
contrast to the works stated above, we therefore ignore the temporal
characteristics of speech and aim for a much higher dimensionality
reduction. We will compare our result with the perceptually moti-
vated MEL-based features which are widely used in speech recogni-
tion systems.

2. NON-NEGATIVE MATRIX FACTORISATION USING
THE DIVERGENCE CRITERION

NMF decomposes a non-negative data matrix V into a product of
two lower rank non-negative matrices W and H:

V ≈WH (1)

with V an m × n matrix, W an m × r matrix and H an r × n
matrix where normally r ≤ m. This shows that each column of V is
written as a linear combination of the r basis vectors in the columns
of W, weighted with the coefficients in the corresponding column of
H. This can be seen as a dimensionality reduction of data vectors in
an m-dimensional space to the r-dimensional space spanned by the
columns of W. This is only possible if the basis vectors represented
by the columns of W uncover the latent linear structure in the data.

The quality of the approximation can be assessed with cost func-
tions such as mean squared error (MSE) or divergence [4]. We focus
only on the divergence criterion because the dynamic range of the
data used in this experiment is too high to use the MSE criterion (see
section 3). The divergence criterion between matrices V and X is
defined as

Div(V ‖ X) =
X
i,j

„
Vij log

Vij

Xij
−Vij + Xij

«
(2)

which reduces to zero if and only if V = X.
To find stationary points of the divergence between V and WH,

an iterative scheme with multiplicative update rules can be used as in
[4]. In [5] it is proven that a point which is invariant under these up-
date rules is also invariant under the update formulas of the algorithm
proposed in [6] for probabilistic latent semantic analysis (PLSA).
This means that a solution of NMF with divergence criterion is also
a solution of the PLSA algorithm and vice versa. In fact, PLSA can
also be interpreted as a non-negative factorisation of a non-negative
observation matrix V, using a divergence criterion. One can trans-
late the PLSA algorithm into the following update rules:
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with W(0) a random matrix and H(0) a random matrix with rows
summing to one. The update formulas (3) are very similar to the
update formulas for NMF with divergence criterion in [4]. Experi-
ments show that both algorithms converge at the same speed to the
same solution when using the same initialisation. In the experiments
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Fig. 1. Comparison of the NMF basis vectors with the Davis & Mermelstein MEL-frequency filter bank

proposed in this paper, the update (3) is used because of the absence
of a normalisation step in the update of W. When H is properly
scaled, the normalisation of W is implicit because the PLSA model
uses probability matrices.

3. CONSTRUCTING THE DATA MATRIX

The columns of the data matrix V contain spectral slices of contin-
uous speech recordings from the TIMIT database, sampled at 16000
Hz. The speech signals are pre-emphasised using a first-order high-
pass filter H(z) = 1 − αz−1 with α = 0.95. The resulting signals
are decomposed into frames of 25 ms with 10 ms frame shift. Each
frame is Hamming-windowed and zero-padded resulting in frames
xi with 512 samples where i goes from 1 to approximately 1.13 ×
106. Let Xi be the first 257 points of the FFT of xi. The power
spectra |Xi|2 are normalised to obtain unity energy and placed in
the columns of V. The normalisation prevents that high energetic
phonemes dominate the factorisation, neglecting low energy phonemes
like fricatives (see section 5). Because V contains speech power
spectra, its dynamic range is high. This is why the divergence cost
criterion is used to assess the approximation, and not the MSE crite-
rion. With a MSE criterion, the highest peaks in the matrix V would
dominate the entire factorisation.

4. FACTORISATION

The matrix V is factorised by NMF with r = 24. This is the clas-
sical number of MEL-features used in most speech recognition sys-
tems sampling at 16000 Hz. Increasing this number leads only to a
minor decrease of recognition errors.

Fig. 1(a) shows the matrix W found by NMF. The columns are
scaled to obtain a maximum value of 1 and are permuted for intel-
ligibility. Repeating the experiment with other initialisations always
reveals a similar result with minor translations of the bands in the fre-
quency spectrum and sometimes higher side lobes. The basis vectors
in the columns of W are sparse and can be interpreted as frequency
bands. This is remarkable since no constraints were imposed on the
shape of the basis vectors. The coefficients in H show how much
each band is activated to reconstruct the according spectrum in V.

Figure 1(b) shows the Davis & Mermelstein MEL-frequency fil-
ter bank which is often used to generate feature vectors for speech
recognition [7]. There is a remarkable similarity between this filter

bank and the basis vectors found by NMF, both having wider sub-
bands at higher frequencies. The MEL-scale used for the design of
the MEL-frequency filter bank is based upon the frequency analysis
performed by the basilar membrane in the cochlea of the inner ear. It
models the fact that frequency resolution is lower at high frequencies
than it is at low frequencies, leading to wider spectral bands at high
frequency.

The fact that a similar result is obtained by analysis of human
perceptual hearing (MEL scale) and analysis of human speech as
done in this experiment, shows that the human speech production
system and the hearing system are well matched to each other. It
seems that we produce speech in such a way that our hearing system
is able to capture as much information as possible.

5. ENERGY DEPENDENCE OF THE USED CRITERION

Although the divergence criterion is better suited than MSE to ana-
lyse data with a high dynamic range, there is still a linear dependence
on energy which may influence the decomposition. To see this, we
analyse the divergence cost for reconstructing one element v by x.
According to (2), the divergence is

Div(v ‖ x) = v log
v

x
− v + x (4)

Let δ = x−v
v

be the relative reconstruction error. We can then
rewrite (4) as

Div(v ‖ x) = v log
v

(1 + δ)v
+ δv

= (δ − log (1 + δ))v

This shows that the same relative reconstruction error leads to a
higher cost for a high value than for a low value. This means that
the divergence criterion is biased, favouring parts of the spectrum
with high mean energy. The pre-emphasis and the normalisation of
the columns of V partly solves this problem. However, when ob-
serving Fig. 2 showing the mean energy in each row of V, it is clear
that the energy is not uniformly distributed over the whole spectrum.
Because of the higher mean energy in the first quarter of the spec-
trum, NMF has the tendency to reconstruct the low-frequency parts
of the spectrum with a higher resolution than the rest of the spec-
trum. This could explain why we obtain smaller subbands at the
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Fig. 2. Mean energy in V throughout the frequency spectrum

low frequencies. Therefore, we have to be careful concluding that
NMF searches for basis vectors with most information content about
the speech spectrum. It could be possible that we are measuring en-
ergy instead of information. In section 5.1, we will invalidate this
experimentally, showing that NMF is not merely measuring energy.
Furthermore, in section 5.2 we will argue that a larger focus on high
energetic bands is necessary to obtain a good design.

5.1. Experimental counterarguments

When analysing Fig. 1(a), we see that the largest increase in band-
width is found between 4000 and 8000 Hz. Notice that the second
half of the spectrum is covered by only 20% of the basis vectors.
However, when we observe Fig. 2, we see the steepest decrease
in energy at about 1000 to 2000 Hz. If NMF was only measuring
energy, the bandwidth would increase dramatically in this area and
should be negligible in the area between 4000 and 8000 Hz, which
is clearly not the case.

Furthermore, it is remarkable that the basis vectors found by
NMF have contiguous FFT-bins without any gaps in the frequency
response. Notice that we did not use any constraint to enforce this.
This shows that NMF exploits the correlation between adjacent bins.
Because formant bandwidth increases for subsequent formants, the
correlation is spread over wider spectral areas at higher frequencies,
leading to wider subbands. If perfect correlation would exist be-
tween FFT-bins, NMF would group according to correlation or in-
formation rather than energy. Therefore, the divergence criterion is
useful, even though it may be biased.

5.2. Energy and information

Although energy and information are different concepts, they are
intertwined: there can be no information without energy. It is nec-
essary that bands with high mean energy have a stronger impact on
the design: in the extreme case that there is no energy, NMF should
not incorporate this in the design. The higher mean energy in the
first part of the spectrum is due to a higher formant density, which
results in a higher informative value. It is therefore desirable to place
smaller and more bands in the spectral areas with high mean energy.
If NMF would not have a focus on the spectral bands with high mean
energy, this would be disadvantageous for the reconstruction of the
low frequency areas where most structure and determinism can be
found.

6. COMPARISON WITH HEARING MODELS

In this section, we compare our result with several hearing models
found in literature. When comparing figures 1(a) and 1(b), an offset
of approximately 200 Hz can be observed concerning the start of the
first band. Experiments where the first band is forced to start at 0 Hz
(this is possible by using the fact that zeros remain zero when using
multiplicative update rules) always lead to a higher divergence. This
shows that the offset is not caused by local optima. The actual cause
is the lack of energy in the lower frequencies (cf. Fig. 2). This is
due to pre-emphasis and the fact that the data in the TIMIT database
is high-pass filtered, probably to get rid of a DC component. When
testing on the Resource Management database [8], NMF does find a
basis vector on these lower frequencies, but with an artifact on DC.
The other basis vectors are very similar to the ones found with the
TIMIT database.

Fig. 3(a) shows the -3dB bandwidth vs. center frequency of each
subband found with NMF (o), compared to other hearing models
found in literature: the Davis & Mermelstein MEL-frequency filter
bank (×), the analytical (�) and conventional (�) gammatone fil-
ter bank1 (AGT and CGT), subsequent non-overlapping rectangular
bands of 100 MEL (∗), and 1 Bark critical bands (+). The horizontal
axis is mapped to the Bark scale for intelligibility. Fig. 3(b) shows
the center frequencies of the NMF subbands, compared to the same
hearing models. The AGT and CGT have the same center frequen-
cies as the Davis & Mermelstein filter bank and are therefore omit-
ted. The last band is omitted in both figures because the definition
of the -3dB bandwidth and the center frequency of this last subband
is ambiguous due to side effects. In both figures, the NMF curve has
a similar shape as the other curves and lies -leaving some outliers
out of consideration- within the same area. At 17 Bark or ≈4000
Hz, the slope of the curve representing the -3dB bandwidths of the
NMF spectral bands becomes large when compared to the curves of
the hearing models. This is not surprising, because this curve is the
result of analysing speech signals. It is well-known that most of the
information to understand speech is found below 4000 Hz.

7. RECOGNITION EXPERIMENTS

To compare the performance of the discovered feature set with the
widely used MEL-features, a phoneme recognition experiment with
triphone HMMs with a phone-level trigram is done on a test set dif-
ferent from the one used for the NMF factorisation. One might sug-
gest that the columns of H, containing the activation coefficients for
each spectral band, could be used as feature vectors for speech recog-
nition after performing a log-compression to lower the dynamic range
of the coefficients. Although these coefficients do a good job in re-
constructing the spectra, they are not well suited for use as feature
vectors. The discovered features lead to phoneme error-rates (PER)
of 31.7%, whereas using MEL-features results in a PER of 25.84%.
The disappointing performance is caused by two problems.

First of all, NMF does not always preserve energy when recon-
structing the spectra: sometimes it will omit or suppress a peak to
reduce the divergence cost for reconstruction errors on neighbouring
FFT-bins, leading to more recognition errors. This occurs mostly
when a peak with small bandwidth appears between two adjacent
NMF subbands. If NMF would reconstruct this peak, both sub-
bands must be activated, resulting in high reconstruction errors on
the neighbouring bins.

1The gammatone filter banks were generated with the MATLAB toolbox
HUTear [9].
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Fig. 3. Comparison of the NMF basis vectors (o) with several hearing models: the Davis & Mermelstein MEL-frequency filter bank (×),
the analytical (�) and conventional (�) gammatone filter bank, subsequent non-overlapping rectangular bands of 100 MEL (∗), and 1 Bark
critical bands (+)

Another problem is the large amount of zero-coefficients in H
(about 2.5%) due to overlap of the basis vectors. A basis vector can
have a zero-coefficient if the energy in the corresponding frequency
band is already present due to the activation of neigbouring bands. A
log(x + ε)-compression maps the zero-coefficients to a single value
log(ε). This leads to artifacts in the cloud of data points in the feature
space. These artifacts must be modelled by zero-variance Gaussian
pdf’s which are not handled well by the algorithm that estimates the
parameters of the Gaussian mixtures. Eliminating these zeros by
adding noise reduces the PER with approximately 3%.

Using the basis vectors as a filter bank -integrating the weighted
spectral energy in each band- results in a feature set with approxi-
mately the same performance as MEL-features. The 24-dimensional
feature vectors can be found in the columns of matrix F with F =
WT V. Using these features gives a PER of 25.94%, which does not
significantly differs from the MEL-based recognizer.

8. CONCLUSIONS

In this paper, we used NMF to factorise a data matrix with spec-
tral slices of continuous speech to automatically find a feature set
for speech recognition. The resulting decomposition has remark-
able similarities to perceptually motivated filter bank designs such
as the MEL-frequency filter bank. This supports the hypothesis that
the biological systems for human hearing and speech production are
well matched to each other, making human speech a well tuned and
efficient communication system. Although we pointed out that the
divergence criterion is biased, favouring the spectral areas with high
mean energy, we argued that this does not affect the interpretation of
our results: the decomposition exploits the correlation between adja-
cent FFT-bins, yielding basis vectors with large information content.
Finally, we showed that when using the basis vectors as a filter bank
to generate features, we obtain the same recognition performance as
a MEL scaled filter bank with the same number of channels.
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