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ABSTRACT

Previous particle filter feature enhancement techniques for robust
automatic speech recognition have ignored the fact that neighbored
spectral bins are correlated. In those cases, the spectral bins have
been treated as uncorrelated components in the sampling stage of
the particle filter. In this publication we propose to consider the cor-
relation between the individual spectral bins by correlating the ran-
dom variation after a predicted walk realized by a linear prediction
matrix.

Experiments on artificially added dynamic noise at different sig-
nal to noise ratios as well as on actual recordings with different
speaker to microphone distances show reasonable word error rate re-
duction before and after acoustic model adaptation of the automatic
speech recognition system.

Index Terms— speech feature enhancement, particle filter, cor-
relation between spectral bins, automatic speech recognition

1. INTRODUCTION

Speech feature enhancement can be formulated as a tracking prob-
lem where the clean speech features xk have to be estimated, for
each frame k, given the observation history of the noisy features
y1:k. The clean and noisy features are related by the probabilis-
tic relationship p(xk|y1:k). As stated in Julier and Uhlmann [1]
the minimum mean square error solution to such a tracking problem
consists in finding the conditional mean E[x1:k|y1:k]. Assuming that
(xk)k∈N is a Markov process and that the current observation is only
dependent on the current state, facilitates sequential calculation of
the conditional mean, the solution is given by

E[xk|y1:k] =

�
xkp(xk|y1:k)dx. (1)

Introducing the noise nk as a hidden variable

p(xk|y1:k) =

�
p(xk,nk|y1:k)dnk

with the relation p(xk,nk|y1:k) = p(xk|y1:k,nk)p(nk|y1:k) and
a changed integration order we obtain

E[xk|y1:k] =

� �
xkp(xk|y1:k,nk)dxk� �� �

=hk(nk)

p(nk|y1:k)dn (2)

which can be approximated by Monte Carlo integration (details are
provided in [2]):

E[xk|y1:k] ≈
M�

j=1

ω̃
(j)
k hk(n

(j)
k ) (3)

To solve for (3) requires the evolution of noise modeled by

weighted ω̃
(j)
k random variations j = 1, 2, · · · , M . In the past, the

individual bins of the feature vector have been assumed to be inde-
pendent and identically-distributed (i.i.d.) from each other, ignoring
the fact that neighbored spectral bins (in particular after spectral en-
velope processing or partly overlapping filterbanks) are correlated.
Therefore, in this publication we propose to account for the correla-
tion between spectral bins by correlating the random variation after
a predicted walk, which in our case is realized by a linear prediction
matrix.

2. BRIEF REVIEW OF SPEECH FEATURE
ENHANCEMENT BY PARTICLE FILTERS

Different approaches to speech feature enhancement by particle fil-
ters exist. We follow Singh and Raj [3] who have proposed to track
the noise frame by frame in the logarithmic spectral domain and later
on subtract the noise estimates from the contaminated speech signal.
An extended algorithm of the original approach as stated by Singh
and Raj can be outlined as follows:

1. Draw noise samples
At the start frame k = 0, M particles (noise hypotheses)

n
(j)
0 (j = 1, ..., M ) are drawn from the prior noise density

pnoise(n0) which in our case is estimated on speech absent
regions detected by voice activity detection.

For frames k > 0, M particles n
(j)
k are sampled from the

noise transition probability p(nk|nk−1) which has been esti-
mated on speech absent regions.

The evolution of noise spectra and different sampling tech-
niques will be laid out in more detail in Section 3.

2. Evaluate noise samples
The normalized importance weights are calculated as

ω̃
(j)
k =

p(yk|n(j)
k )�M

m=1 p(yk|n(m)
k )
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where the importance weight for each particle n
(j)
k is evalu-

ated according to the likelihood

p(yk|n(j)
k ) =

pspeech(yk + log(1 − en
(j)
k
−yk )

�d
i=1

����1 − e
n̂
(j)
k,i
−yk,i

����
(4)

if n
(j)
k,i < yk,i ∀ dimensions i. Otherwise p(yk|n(j)

k ) can’t
be evaluated nor has a physical meaning and thus has to be
rejected by setting the particle weight to zero. This causes a
decimation of the particle population which can be remedied
by a fast acceptance test [4] that virtually boosts the number
of particles by redrawing samples in case of rejection.

To account for the dynamics of speech we have proposed
to replace the evaluation of the particle weights based on a
general speech model pspeech by a phoneme-specific model
pphoneme where the phoneme alignment is obtained by a pre-
vious pass of a speech recognition system [5]. Thus, a cou-
pling between the particle filter and the speech recognition
system is established whereas the two components have been
treated as independent components in the past.

3. Compensate for noise estimates
Clean speech spectra can be estimated by using the discrete
Monte Carlo representation of the continuous filtering density
p(nk|y1:k), the so called weighted empirical density

p̃(nk|y1:k) =

M�

j=1

ω̃
(j)
k δ

n
(j)
k

(nk) (5)

The term δ
n
(j)
k

denotes a translated Dirac delta function.

Two different methods to compensate for the noise estimates
will be presented in Section 4.

4. Resample noise
The normalized weights are used to resample among the noise

hypotheses n
(j)
k (j = 1, ..., M). This can be regarded as a

pruning step where likely hypotheses are multiplied and un-
likely ones are removed from the population.

Those steps are repeated with k �→ (k + 1) until all time-frames are
processed.

Working Domain

Particle filters for speech feature enhancements are typically applied
in the logarithmic spectral domain after dimension reduction by mel-
filterbanks. Due to the properties of the used spectral estimation
method provided by warped minimum variance distortionless re-
sponse [6], no filterbank is applied and thus the dimension in the
logarithmic spectral domain is not reduced. As the operation of a
particle filter with high dimensions (in our case 129) would be in-
feasible or very slow, we decided to work in the logarithmic spec-
tral domain after cepstral truncation to 20 dimensions by applying
an inverse Fourier transformation to the cepstral coefficients. In the
truncated logarithmic spectral domain the relation between the noisy
observation y, the clean feature x and noise n can be approximated
by

x ≈ log(ey − en) = y + log(1 − en−y). (6)

3. EVOLUTION OF THE NOISE SPECTRA (SAMPLING)

The used particle filter tracking application requires the prediction
of the noise n̂k = p(nk|n0:k−1) given the trajectory of the noise
up to time k. The noise transition probability p(nk|n0:k−1) can be
modeled by a dynamic system model, which can be classified into
random walk and predicted walk.

3.1. Random Walk

The simplest way to model the evolution of noise features is a ran-
dom walk

n̂k = nk−1 + εk

where nk denotes the noise spectrum at time k, while the εk

terms are considered to be i.i.d. zero mean Gaussian, i.e. εk ∼
N (0, Σnoise), where the covariance matrix Σnoise is assumed to be
Gaussian.

3.2. Predicted Walk

To consider information about the evolution of the noise, Raj et
al. [7] proposed and investigated to use a mth-order autoregressive
process, A1:m, to predict the evolution of the noise

n̂k = A1nk−1 + A2nk−2 + · · · + Amnk−m + εk

= A1:mnk−1:k−m + εk.

Learning the Autoregressive Noise Model

The autoregressive noise model consists of two components that
have to be learned for a specific type of noise:

• the linear prediction transition matrix A1:m and

• the covariance matrix Σnoise where once again the εk terms
are considered to be i.i.d. zero mean Gaussians.

Minimization of the prediction error norm results in the following
estimate of the linear prediction matrix:

A1:m = E[nkN
T
k−1:k−m]E[nk−1:k−mNT

k−1:k−m]−1
(7)

Those matrices can be derived from the noise data 1, 2, . . . , K as

E[nkN
K
k−1:k−m] =

1

K

K�

k=l

nkN
T
k−1:k−m

and

E[nk−1:k−mNT
k−1:k−m] =

1

K

K�

k=l

nk−1:k−mNT
k−1:k−m.

Note that it is sufficient to estimate the matrices from pieces of noise
as long as the pieces are long enough to contain enough history, e.g.
we have used noise only pieces between speech regions found by
voice activity detection.

To learn a linear prediction matrix of model order m requires
d2m coefficients to be reliably estimated, which can only be estab-
lished if a huge amount of training data is available. For a reasonable
amount of training data only a small reduction in the mean square
error can be reached by using higher order models [7]. Thus, a first
model order is sufficient for our investigations.

The diagonal covariance can be learned by

σ2
i := E[(nk,i − n̂k,i)

2],
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Fig. 1. Correlation matrices of Δn for additive dynamic noise
and reverberation. The additive noise shows high correlation over
a broad number of bins, while reverberation is less correlated and
mostly limited to neighbored bins.

where nk,i denotes the ith vector component of the noise nk and
n̂k,i denotes the ith vector component of the predicted noise n̂k =
A1:mNk−1:k−m. However, in practice, we have yielded better re-
sults by manually increasing the variance with identical values over
all dimensions. This is probably due to an enlarged search space.

3.3. Predicted Walk with Correlation

In this section we present how to estimate the correlation in the ran-
dom process and how to apply correlation between the spectral bins
into the sampling stage of the particle filter. As the random process
represents only the difference between the true noise and predicted
noise, we start by

Δn = nk − A1:mnk−1:k−m + εk.

The covariance matrix of the random process is then

ΣΔn = (Δn − μΔn) (Δn − μΔn)T

where the mean values are given by

μΔn =

M�
m

Δnm.

Normalizing the single bins of ΣΔn by their variances σ2
Δn the cor-

relation matrix can now be calculated

Corr(x, y)Δn =
Σ(x, y)Δn

σ(x)Δnσ(y)Δn
.

Given the Cholesky decomposition matrix by solving for

CholTΔnCholΔn = CorrΔn

correlated noise samples can be drawn from the uncorrelated noise
samples, where the vector εk is identical to the one used in Sec-
tion 3.2, by

εcorr
k = CholΔnεk.

Figure 1 shows two correlation matrices. The first matrix is cal-
culated on dynamic noise while the second matrix is calculated on
reverberant data. On dynamic noise the correlation reaches over
a broad number of bins while for reverberation the correlation is
mainly limited to neighbored regions.

4. NOISE COMPENSATION

In this section we show two possible ways to evaluate for hk(n
(j)
k ),

the integral defined in (2).

4.1. The Vector Taylor Series Approach

To solve for the non-linear relation y = log(1+enk−xk ) it has been
proposed by Moreno et al. [8] to use a 0th order vector Taylor series
(VTS) expansion around the mth Gaussian’s mean μm.

hVTS
k (nk) =

M�
m=1

p(m|y1:k,nk)

·
�

xδyk−log(1+enk−μm )(xk)dxk

=

M�
m=1

p(m|y1:k,nk)
�
yk − log(1 + enk−μm)

�

= yk −
M�

m=1

p(m|y1:k,nk)log(1 + enk−μm) (8)

4.2. The Statistical Inference Approach

In Monte Carlo sampling it is only required to consider point ob-
servations while the distribution is implicitly contained. Thus, it is
possible to use the relationship between xk, nk and yk from (6)
without the need for approximation [4] and we get the deterministic
probability density

p(xk|y1:k,nk) = δyk+log(1−enk−yk )(xk).

By the substitution of p(xk|y1:k,nk) in hk(nk) we get the so called
statistical inference approach (SIA)

hSIA
k (nk) =

�
xkδyk+log(1−enk−yk )(xk)dxk

= yk + log(1 − enk−yk ) (9)

which can be regarded as spectral subtraction in the logarithmic
power domain (for one noise hypothesis).

5. EXPERIMENTS

In order to evaluate the performance of the proposed particle fil-
ter enhancements under realistic conditions we have recorded 35
minutes of lecture speech with different microphone types and
speaker to microphone distances (similar to RT-06s development and
evaluation data [9]) and added dynamic noise with different signal
to noise ratio (SNR) to the close talk condition. As a speech recog-
nition engine we used the Janus Recognition Toolkit (JRTk) with the
same setup as described in [10]: The acoustic training material, ap-
proximately 100 hours, used for the experiments reported here, was
taken from the ICSI, NIST, and CMU meeting corpora, as well as the
Translanguage English Database (TED) and CHIL lecture corpora
resulting in a discriminatively trained semi-continuous quint phone
systems that contain 16000 distributions over 4000 codebooks, with
a maximum of 64 Gaussians per model. The 3-gram language model
contains approximately 23,000 words and has a perplexity of 125 on
the test corpora. The used warped minimum variance distortionless
response cepstral coefficients [6] have been shown to outperform mel
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SNR 20 dB 15 dB 10 dB 5 dB

Pass 1 2 1 2 1 2 1 2

Enhancement Sampling Word Error Rate

none — 20.7% 13.3% 29.3% 17.0% 43.4% 26.0% 61.6% 41.6%
VTS uncorrelated 19.4% 13.2% 26.4% 16.7% 39.5% 23.8% 56.5% 39.4%
SIA uncorrelated 20.1% 12.9% 27.7% 16.5% 41.4% 24.5% 57.6% 39.0%
VTS correlated 19.2% 13.2% 26.5% 15.9% 38.6% 23.4% 57.0% 38.0%
SIA correlated 19.8% 12.6% 27.6% 16.8% 40.3% 24.0% 58.1% 39.5%

Table 1. Word error rates for various particle filter approaches with additive noise at different signal to noise ratios (SNR)s.

Microphone CTM Lapel Table Top Wall

Distance 5 cm 20 cm 100–150 cm 300–350 cm

SNR 24 dB 23 dB 17 dB 10 dB

Pass 1 2 1 2 1 2 1 2

Compensation Sampling Word Error Rate

none — 11.6% 09.8% 11.7% 09.9% 19.0% 14.6% 45.6% 29.0%
VTS uncorrelated 11.3% 09.6% 11.7% 10.0% 18.7% 14.0% 44.6% 27.4%
SIA uncorrelated 11.6% 09.3% 11.6% 10.2% 19.3% 14.0% 43.5% 26.5%
VTS correlated 11.0% 09.7% 11.8% 10.0% 19.0% 13.9% 43.5% 26.8%
SIA correlated 11.3% 09.5% 11.8% 09.9% 19.0% 14.2% 42.4% 25.1%

Table 2. Word error rates for various particle filter approaches at different speaker to microphone distances.

frequency cepstral coefficients [5] in combination with and without
speech feature enhancement.

We evaluated on unadapted (first pass) acoustic models and
acoustic models (second pass) which have been unsupervised
adapted by maximum likelihood linear regression (MLLR), con-
strained MLLR and vocal track length normalization (VTLN). The
determined VTLN factors have also been used in the second pass
of the particle filter where furthermore the general representation of
clean speech has been replaced by a phoneme dependent representa-
tion which has been aligned on the previous recognition pass [5].

Table 1 presents results on additive noise experiments and Ta-
ble 2 presents results on actual recodings with different speaker to
microphone distances. The results for various SNR and speaker to
microphone distances are mixed. Not surprisingly, for SNR above
20 dB the particle filter, correlated or uncorrelated, can not improve
the performance significantly as the signal is already clean. How-
ever, at SNR below 20 dB, the particle filter is able to show good
performance improvements. At reasonable SNR values, around 10
dB, the particle filter with correlation shows good improvements in
performance over the particle filter without correlation. Those im-
provements are, however, not consistent for other SNR values.

6. CONCLUSIONS

Even though the improvements due to correlation are somewhat in-
termingled, they show in average small improvements which are in
particular significant for SNR values around 10 dB, on additive dy-
namic noise and also on distant recordings. Thus, we feel it is worth-
while using the predicted walk with correlated sampling as the im-
provements are established with a limited increase of computation
by just one additional matrix multiplication per particle.
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