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ABSTRACT
Heteroscedastic discriminant analysis (HDA) with two - di-

mensional (2D) constraints is proposed in this paper. HDA

suffers from the small sample size problem and instability

when lack of training data or feature dimension is high, even

when the number of dimension is in a suitable range. Two-

dimensional HDA is first proposed, then we show that 2D

methods are actually a kind of structure-constrained 1D meth-

ods, and lastly, HDA with 2D constraints is proposed. Exper-

iments on TIMIT and WSJ0 show that the proposed method

outperforms other methods.

Index Terms— linear transformation, 2DHDA, 2DLDA,

HDA, dimensionality reduction

1. INTRODUCTION

Heteroscedastic discriminant analysis [1], which finds a linear

transformation by maximizing individual-weighted Fisher-kind

ratio, achieves great success in dimensionality reduction and

other pattern recognition areas. In speech recognition, usually

several successive frame features are concatenated, forming

long span vectors, as inputs of HDA. The more features con-

catenated, the more coefficients in HDA transformation ma-

trix should be estimated. When lack of training data or the

number of dimension of data is too big, HDA suffers from the

small sample size problem and instability of final recognition

performance. We think some constraint on the structure of the

transformation matrix, to reduce its degree of freedom, may

solve this problem.

Recently, two-dimensional dimensionality reduction meth-

ods, such as 2DPCA [2], 2DLDA [3], 2DLPP [4], 2DLDA

+PCA[5] and 2DADA [6], appeared in the literature and per-

formed well in image recognition area. Now 2DLDA has

been tested for speech recognition [7]. They make use of ma-

trix form of features, greatly reduce the computational com-

plexity and can solve the small sample size problem.

Inspired by these 2D methods, we propose two- dimen-

sional HDA (2DHDA). 2D methods are actually a kind of
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structure-constrained 1D methods. We try to use this prop-

erty to solve the small sample size problem and instability of

HDA, and propose 2D-constrained HDA.

The rest of this paper is organized as follows. In Section 2,

the HDA and 2DLDA are reviewed, and then 2DHDA is pro-

posed. In Section 3, we analyse that 2D methods are a kind

of structure-constrained 1D methods, and HDA with 2D con-

straints is presented. Experiment results are shown in Section

4 and Section 5 is the conclusions.

2. METHODS

2.1. Heteroscedastic Discriminant Analysis

HDA is an extension to LDA by considering the individual

weighted contributions of the classes to the objective func-

tion. It removes the equal within-class covariance constraint

of LDA, and achieves more discriminant information.

Consider a set of N independently sampled column fea-

ture vectors {x1, x2, ...,xN}, xi ∈ Rp, each of which be-

longs to one and only one class j ∈ {1, ..., c} through the

surjective mapping of indices l : {1, ..., N} → {1, ..., c}. As-

sume class j has Nj samples,
∑c

j=1 Nj = N . The mean xj

and covariance Sj of class j is defined as:

xj =
1

Nj

∑
i∈l−1(j)

xi, Sj =
1

Nj

∑
i∈l−1(j)

(xi−xj)(xi−xj)�.

Within-class scatter matrix Sω and between-class scatter Sb

matrix are defined as:

Sω =
1
N

c∑
j=1

NjSj , Sb =
1
N

c∑
j=1

Nj(xj − x)(xj − x)�,

where x = 1
N

∑N
i=1 xi.

The goal of HDA is to find a linear transformation f :
Rp → Rq, y = f(x) = W�x, with W a (p × q) matrix of

rank q (q ≤ p), such that the following objective function is

maximized:
c∏

j=1

( |W�SbW|
|W�SjW|

)Nj

=
|W�SbW|N∏c

j=1 |W�SjW|Nj
(1)

By taking log, we get:
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H(W) = N log |W�SbW| −
c∑

j=1

Nj log |W�SjW|. (2)

When diagonal variance modeling constraints are present

in the final feature space, the objective function to be maxi-

mized is:

G(W) = N log |W�SbW|−
c∑

j=1

Nj log |diag(W�SjW)|.

(3)
There are no analytical solutions for the above two opti-

mization problems, and numerical optimization routines (such

as: steepest descent, quasi-Newton) are adopted.

HDA solution is invariant to full rank linear transforma-

tions of the data in the original space, and subsequent feature

space full rank transformations will not affect the value of the

objective function [1].

When doing experiments of speech recognition with HDA,

usually several successive column frame features ot are con-

catenated together, forming long span vectors xt = (o�
t−k, ...,

o�
t−1, o

�
t ,o�

t+1, ...,o
�
t+k)�. If the dimension of feature ot is

m, then the dimension of spanned vector xt is p = (2k +
1)m. It should estimate transformation matrix W of size

((2k + 1)m × q). The more features concatenated, the more

coefficients in W should be estimated. Experiments shown

that it will degrade the final recognition performance when

more features are concatenated for HDA, even when k is in

a suitable range. We think it may be too more coefficients

needed to be estimated, which may lead to small sample size

problem and instability as the training data unchanged. Some

constraint on the structure of transformation matrix W may

solve the problem.

2.2. Two-Dimensional Linear Discriminant Analysis

2DLDA [3] makes use of the matrix structure of features and

achieved great success in image recognition area.

Now let’s consider features taking the form of matrix.

Consider a set of N feature matrices {A1,A2, ...,AN} taken

from an (m × n)-dimensional feature matrix space. Assume

that each feature belongs to one and only one class j ∈ {1, ..., c}
through the surjective mapping of indices l : {1, ..., N} →
{1, ..., c}. Class j has Nj samples,

∑c
j=1 Nj = N .

Define between-class image scatter matrix to be:

GAb =
1
N

c∑
j=1

Nj(Aj − A)�(Aj − A), (4)

and within-class image scatter matrix to be:

GAω =
1
N

c∑
j=1

∑
i∈l−1(j)

(Ai − Aj)�(Ai − Aj), (5)

then 2DLDA is to find a transformation matrix V of size (n×
d) which maximizes the following objective function:

arg max
V

|V�GAbV|
|V�GAωV| , (6)

which is just a generalized eigenvalue problem, and the max-

imum is obtained by the generalized eigenvectors between

GAb and GAω corresponding to the first d largest general-

ized eigenvalues.

2DLDA makes use of matrix structure of features, and

greatly reduces the computational complexity. As it will be

shown later, 2DLDA actually is a kind of structure-constrained

traditional 1D linear transformation, which may be useful for

the problem of transformation matrix structure encountered

in performing HDA described above.

2.3. Two-Dimensional Heteroscedastic Discriminant Anal-
ysis

Before we add some constraint on the transformation ma-

trix of HDA, let’s first extend HDA to two-dimensional HDA

(2DHDA).

Still consider a set of N feature matrices {A1,A2, ...,AN}
taken from an (m × n)-dimensional feature matrix space as

described above. In image recognition area, Ai can just be

image matrix. In speech recognition area, Ai at time t can be

spliced by several successive column frame features ot in row

direction: Ai = [ot−k, ...,ot−1, ot,ot+1, ...,ot+k]. Each Ai

belongs to one and only one class j ∈ {1, ..., c} through the

surjective mapping of indices l : {1, ..., N} → {1, ..., c}. As-

sume class j has Nj samples,
∑c

j=1 Nj = N .

The between-class image scatter GAb is defined as in (4)

and image scatter Gj of class j is defined as:

Gj =
1

Nj

∑
i∈l−1(j)

(Ai − Aj)�(Ai − Aj). (7)

The goal of 2DHDA is to find a linear transformation g :
R(m×n) → R(m×d), B = g(A) = AV, with V a (n × d)
matrix of rank d (d ≤ n), such that the following objective

function is maximized:
c∏

j=1

( |V�GAbV|
|V�GjV|

)Nj

=
|V�GAbV|N∏c
j=1 |V�GjV|Nj

(8)

By taking log, and we get:

H(V) = N log |V�GAbV| −
c∑

j=1

Nj log |V�GjV|. (9)

There is no analytical solution for this optimization prob-

lem. We adopt quasi-Newton numerical optimization routine

to solve the optimal transformation matrix V.

Like HDA, 2DHDA solution is invariant to full rank linear

transformations of the data in the original space, and subse-

quent feature space full rank transformations will not affect

the value of the objective function.

3. CONSTRAINED HDA

3.1. 2D methods: constrained 1D methods

Suppose there is a two-dimensional (2D) transformation ma-

trix V of size (n × d), which maps matrix-structured feature

A of size (m × n) to a smaller matrix-structured feature B
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by B = AV. Then the size of B is (m × d). The vectorized

representation of this transformation is:

z =̂ V ec(B) = V ec(AV) = (V� ⊗ Im)V ec(A)
=̂ (V� ⊗ Im)x = (V ⊗ Im)�x

=̂ W�
2 x, (10)

where V ec(·) is vectorization operator of matrix, which splices

all the columns of the matrix one after another to form a long

column vector. Operator ⊗ is the Kronecker product of ma-

trices. Im is the identity matrix of order m.

From equation (10), we can see that 2D linear transforma-

tion methods are actually kinds of traditional one-dimensional

(1D) methods with some structural constraint on transforma-

tion matrix W2, which should be in the form of the Kronecker

product between a smaller transformation matrix and an iden-

tity matrix: (V ⊗ Im).
This constraint on the structure of transformation matrix

greatly reduces the degree of freedom of transformation ma-

trix. The traditional 1D methods should estimate matrix W2

of size (nm × dm), while 2D methods only need estimate

matrix V of size (n×d). This property contributes to the sta-

bility and computational simplicity of 2D methods, especially

when lack of training data.

3.2. HDA with 2D constraints

Inspired by the property that 2D methods are actually con-

strained 1D methods, now we try to add constraints on the

transformation matrix of HDA.

Suppose each data feature can be easily represented in

matrix Ai form and in column vector xi form. In image

recognition area, Ai can just be image matrix and let xi =
V ec(Ai); In speech recognition area, let speech feature ot

at time t be column vector, then Ai at time t can be Ai =
[ot−k, ...,ot−1, ot,ot+1, ...,ot+k], and xi = V ec(Ai). Sup-

pose the size of Ai is (m×n), then the size of xi is (mn×1).
Now we try to perform HDA and reduce the dimension to q
(q < mn).

Traditional HDA can be performed directly on features in

xi form to estimate transformation matrix W of size (mn ×
q), and do dimensionality reduction by y = W�x. However,

when we did experiments of speech recognition with HDA,

experiments shown that it will degrade the final recognition

performance when more feature are concatenated, even when

frame range 2k + 1 is in a suitable range. What’s more, when

k becomes larger, instability of HDA begins to increase.

Now we do 2D methods (such as: 2DLDA or 2DHDA) on

features in Ai form. Suppose we’ve gotten the 2D transfor-

mation matrix V of size (n×d). Transfer it into 1D form and

we get transformation matrix W2 = (V⊗ Im) for features in

xi form. The size of W2 is (nm × dm), and after projection

z = W�
2 x, we get new features {zi} of size (dm × 1).

Then we perform another HDA on the new features {zi}.

Suppose we’ve gotten the 1D transformation matrix W1 of

size (dm × q), which maps zi to final feature yi by yi =
W�

1 zi. yi is the required q-dimensional column vector.

In fact, this combined method is a kind of structure- con-

strained 1D method. As we can see,

yi = W�
1 zi = W�

1 W�
2 xi = W�

1 (V ⊗ Im)�xi

= [(V ⊗ Im)W1]�xi. (11)

The total structure-specific transformation matrix is [(V⊗Im)
W1] of size (mn × q), while its degree of freedom is only

nd + dmq (d < n). This constraint on the structure of trans-

formation matrix may alleviate the small sample size problem

and instability encountered by HDA.

4. EXPERIMENTS

To evaluate the performance of constrained HDA and other

methods, we test them on two databases: TIMIT [8] and WSJ0

[9]. When performing feature transformations, we chose 39

-dimensional MFCCs (12 static MFCCs, log energy, and their

first- and second-order time derivatives) as inputs. All meth-

ods also chose 39 as the final dimension of features for com-

parison. For 1D methods HLDA and HDA, usually three to

five successive frames are concatenated for input. For 2D

methods 2DLDA+HLDA, 2DLDA +HDA and 2DHDA+HDA,

usually five to seven successive frames are spliced, and the

mid-reduced column dimension d in 2D methods was set to

be three.

When performing 2DLDA and 2DHDA, we first com-

pressed features of size (39 × (2k + 1)) to (39 × 1) size.

But this kind of transformation fails to consistently improve

the final recognition performance. This may be due to the fact

that this time each dimensions share only one transformation.

Therefore, we adopted 13-dimensional static MFCCs as in-

puts for 2DLDA and 2DHDA, compressed features of size

(13 × (2k + 1)) to (13 × 3) size, and concatenated them to

form 39-dimensional final features.

4.1. Tests on TIMIT

We first applied these methods for continuous phoneme recog-

nition on the TIMIT database. The details of the database

can be found in [8]. The standard training set (3,696 utter-

ances) and coreTest set (192 utterances) were used. 48 phones

were used to create context dependent triphone models. Eight

Gauss components per tied state were trained in the final mod-

els. The features in the baseline (maximum likelihood, ML)

are the conventional 39-dimensional MFCCs.

When counting the results, only 39 effective phones were

counted as described in [8]. Table 1 gives the top recogni-

tion performance in phone error rate (PER) for different meth-

ods. Relative reduction (R.R.) is computed based on baseline

(ML). “Dimension” in the table lists the dimension changes

of different methods when achieving the top recognition accu-

racy. From the table we can see that HDA with 2D constraints

achieved great improvement than other methods.
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Table 1. Top Recognition performances of different methods on TIMIT database

methods ML HDA 2DLDA 2DHDA 2DLDA+HLDA 2DLDA+HDA 2DHDA+HDA

Dimension 39 3*39→39 13x13→13x3 13x25→13x3 39x5→39 39x7→39 39x7→39

PER(%) 37.52 31.05 34.47 33.50 32.81 30.31 29.98

R.R.(%) - 17.24 8.13 10.71 12.55 19.22 20.10

Table 2. Top Recognition performances of different methods on WSJ0 database

methods ML HDA 2DLDA 2DHDA 2DLDA+HLDA 2DLDA+HDA 2DHDA+HDA

Dimension 39 3*39→39 13x7→13x3 13x7→13x3 39x5→39 39x7→39 39x5→39

WER(%) 4.89 4.43 5.04 4.48 4.63 4.43 4.24

R.R.(%) - 9.41 -3.07 8.38 5.32 9.41 13.29

4.2. Tests on WSJ0

Next we carried out constrained HDA and other methods on

the Wall Street Journal speech corpus WSJ0 [9]. We used

the standard SI-84 training set for training the acoustic mod-

els. All methods were tested on the standard nov92 5K non-

verbalized test set using a trigram language model. Eight to

sixteen Gauss components per tied state were trained in the

final models. The features in the baseline (ML) are the con-

ventional 39-dimensional MFCCs processed by CMN.

Table 2 gives the top recognition performance of word

error rate (WER) for different methods. Again, HDA with

2DHDA constraint outperformed other methods.

4.3. Discussions

We adopted 39-dimensional MFCCs (incorporating deriva-

tives) rather than 13-dimensional static MFCCs for our ex-

periments. The reason is based on an initial contrast test:

training LDA using long span vectors concatenated by three

successive 39-dimensional MFCCs, or using long span vec-

tors concatenated by nine successive 13-dimensional static

MFCCs. The size of LDA transformation matrices are both

(117 × 39). The computational complexities of training pro-

cedures and the final model complexities are both the same.

However, the former concatenating method outperforms the

latter in the recognition test with final models. This can be

explained from the first principle of statistics. In statistics, all

observations are assumed to be sampled independently. Con-

catenating methods obviously disobey this rule. The former

concatenating method shares 2/3 of total elements between

neighbor long span vectors and the latter shares 8/9. The for-

mer seems more closer to the rule. Due to coarticulation of

speech, consecutive frames are dependent. We still can make

full use of information existed in neighbor frames. Maybe

other concatenating methods should be investigated.

5. CONCLUSIONS

To solve the small sample size problem and instability of HDA

when concatenated feature dimension is high, we proposed

2D-constrained HDA. 2DLDA were extended to 2DHDA. We

also showed that 2D methods are actually a kind of structure-

constrained 1D methods, and finally, HDA with 2D constraints

is described. Experiments on TIMIT and WSJ0 show that the

proposed method outperformed other methods in recognition

performance when model complexities are the same.
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