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ABSTRACT

In speech recognition, acoustic units are highly related. 
Different from some adaptation methods, such as Reference 
Speaker Weighting (RSW) and Eigenvoice, the correlation 
between different acoustic units in the feature space, which 
is called Spatial Correlation, focuses on the correlation 
information among different acoustic units of the same 
speaker. In this paper, a novel scheme using spatial 
correlation is proposed. In speech recognition system, with 
the spatial correlation information, the refined acoustic 
models are trained, and the transformation matrices are 
determined based on Minimum Covariance criteria. 
Experiments of this new algorithm show a significant 
improvement on speaker independent recognition systems. 

Index Terms— Speech recognition, spatial correlation, 
feature transformation, minimum covariance

1. INTRODUCTION 

As is well known, acoustic units vary greatly with speakers. 
But they are far from independent. Conversely, since they 
are all from the speech organs of human being, and some 
fixed pronunciation rules should be obeyed when they are 
produced, there must be some relationship between the 
acoustic units. What’s more, the relationship between 
different acoustic units of the same speaker might be stable. 
From the viewpoint of speech recognition, this relationship 
between acoustic units can be described by the correlation 
among acoustic model parameters in the feature space, so 
we call it Spatial Correlation.  

Hazen [1] used some relation information of acoustic 
models in his Ph.D. work. He focused on the relationship 
between the acoustic models of different speakers, which he 
called as Speaker Correlation. He proposed an adaptation 
technique called Reference Speaker Weighting (RSW). In 
this technique, each speaker is represented by a speaker 
vector, which is made up of his acoustic model parameters. 
The basic idea of RSW is that a new speaker vector can be 
constructed from a weighted combination of a set of 
individual reference speaker vectors. Eigenvoice [2] 
improved the idea of RSW. It applies principal component 

analysis (PCA) to the covariance or correlation matrix 
calculated between the reference speaker vectors, to find a 
set of eigenvectors-eigenvoices. Then the new speaker 
vector is represented by a linear combination of the 
eigenvoices. With little adaptation data, the Eigenvoice 
approach significantly outperforms the traditional 
adaptation algorithms such as maximum a posteriori (MAP) 
[3] and maximum likelihood linear regression (MLLR) [4]. 

Yu [5] analyzed the spatial dependence between 
acoustic units quantitatively in his Ph.D. work. He proposed 
the “Dependence Coefficient” method to analyze the 
relationship between parameters of different acoustic 
models of the same speaker. One of his important 
conclusions is that when the parameters of two acoustic 
units are strongly dependent, the linear dependence, which 
is called Spatial Correlation, is dominant, while the 
nonlinear dependence can be ignored. Based on his analysis 
on the spatial dependence, Yu proposed a training algorithm 
named “Spatial Constrained Training (SCT)” [6], which 
applies a set of Spatial Constraints to the traditional K-Mean 
Segmental algorithm, and a new adaptation algorithm 
named “Spatial Correlated Maximum a Posteriori 
Adaptation (SC-MAP)” [7], which applies Spatial 
Correlation Assumption to the traditional Maximum a 
Posteriori criteria. Both the two methods achieve quite good 
performance. It is shown that spatial correlation can be very 
useful in speech recognition.

In previous work, the spatial correlation information is 
only applied to acoustic model training with limited data 
and speaker adaptation. It seems to be comparatively 
difficult to use it in decoding process of speech recognition. 
In this paper, a novel scheme is elaborately designed to 
solve this problem. A refined acoustic model using the 
spatial correlation information and the corresponding 
training algorithm are proposed in this scheme to achieve 
much better discrimination, and a feature transformation 
based on Minimum Covariance criteria is introduced to 
derive new acoustic feature in decoding process. 

This paper is organized as follows. In Section 2, we 
describe the scheme to get a refined acoustic model. In 
Section 3, the method to calculate transformation matrix of 
acoustic feature in decoding process is introduced. In 
Section 4, we discuss how to apply the algorithm in speech 
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recognizer implementation. In Section 5, the experiments 
and results are presented. Finally, we summarize our 
findings and outline our future work. 

2. LINEAR DESCRIPTION OF ACOUSTIC UNITS 

In order to use the spatial correlation information in the 
decoding process of speech recognition, we propose a novel 
scheme to get a refined acoustic model. To begin, assume 
that the recognition system has got a set of history frames, 

, and the current framenxxx ,,, 21 y . And assume that 
all the frames are Gaussian with zero mean. Let the 
dimension of the frames be defined as D. Then let 
supervector represent all the history 

frames. Thus the dimension of 

TT
n

TT xxxx ),,,( 21

x  is . Use nD x and y  to 
construct a new feature vector 
                    (1) Wxyz
whereW  is a  matrix. Obviously, the new vector 

 is also a Gaussian vector with zero mean. And the 
covariance matrix of  is expressed as 

nDD
z

z
]))([()( TT

z WxyWxyEzzER        (2) 
Define the comparison of two covariance matrices as: 

     (3) 0,, 2121 RRifRR TT

If the covariance matrix of the new feature z is less 
than the original feature y  in the sense of Equation (3), the 
new feature and the corresponding acoustic model are 
supposed to achieve better discriminative performance, as 
shown in the following sketch: 

Figure 1 Sketch of performance of less covariance 
Choose the transformation matrix W to minimize the 

covariance matrix . As a result, the distribution of the 
vector

zR
z  will be the “narrowest”, and consequently the 

discriminative performance of the new vector z  and the 
new model  will be the best. zR

Define
         (4) ]))([(),( 2WxyERWJ T

z
T

Then the determination of the transformation matrix W is
an optimum problem as following: 

             0),,(min WJ
W
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Let 0/ WJ , we get 
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Since can be any nonzero vectors, the equation can be 
equivalently written as: 
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Finally the optimum transformation matrix is

expressed as: 
W

             (8) 11][][ xyx
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Thus, the new vector and its covariance are expressed as: 
        (9) xRRyz xyx

1

                    (10) xyxyxyz RRRRR 1

where is the autocorrelation matrix ofxR x , while  is the 

correlation matrix between
yxR

y  and x , and is the 

transpose of . It can be proved that is less than 
in the sense of Equation (3). Further more, it can also be 
proved that the more history frames are used, the less 

will be. 

xyR
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3. CALCULATION OF TRANSFORMATION 
MATRIX 

To calculate the transformation matrix , we need to 
calculate the autocorrelation matrix and the correlation 

matrix . The two matrices can be estimated from a set of 
supervectors, which are constructed from the acoustic 
model parameters according to the state labels. Suppose we 
have already trained a set of speaker-dependant (SD) 
acoustic models. For each speaker, a supervector 
corresponding to the history data

W
xR

yxR

x  is constructed from his 
SD acoustic model parameters. The supervector for
speaker

)( pU
p is defined as: 
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state of the history data , and ,
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p
s

p
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is

ix )( p
si is denoting the 

mean vectors of state of speakeris p and the speaker-
independent (SI) model separately.  
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Let the number of speakers be defined as . Then the 
autocorrelation matrix can be expressed as: 

P
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Then the super matrix U can be rewritten as: 
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Thus the correlation matrix can be expressed as: yxR
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Consequently the transformation matrixW is expressed as: 
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Since the number of speakers is much less than the 
number of history frames, the autocorrelation matrix 

calculated by Equation (12) is always rank-deficient, 
that is, non-invertible. But we can use the Moore-Penrose 
inverse of this matrix to substitute its inverse matrix. 

xR

Assume we have a full column rank matrix , and a 

full row rank matrix , then 
nmF

mrG
       (17) HHHH FFGGFGFG 1)()(

is a Moore-Penrose inverse of the matrix  [8]. FG
Since the super matrix U always has full column rank, 

Equation (16) can be rewritten as: 
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Finally, we can get the expressions of new feature and 

corresponding autocorrelation matrix as following: 
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In order to obtain the new feature in the time-
synchronous decoding process, we define: 
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Equation (19) can then be rewritten as: 
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According to Woodbury Formula [9], we get 
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Thus Equation (23) can be rewritten as: 
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Eventually, the values of the new feature and its 
corresponding model parameters can be calculated 
instantaneously. And the computation cost is always the 
same even if the number of the history frames increases. It 
provides a good way of utilizing the spatial correlation 
information in decoding process of speech recognition. The 
computation cost mainly depends on the computation of the 
inverse of the DD matrix .)( 1

1
T
sns nn

UAUI

4. APPLICATION IN RECOGNITION 

As Equation (18) shows, the transformation matrix is 
determined by the state labels of the current frame and the 
previous frames in the history. In a speech recognition 
system, however, the state labels are unknown. We can take 
the recognition result as the state labels of the previous 
frames, but how can we decide the state label of the current 
frame? It’s the problem we should solve before the 
algorithm can be applied.  

Fortunately, in the frame-synchronous decoding 
process, we should search all the states and calculate the 
output probability of the vector. Thus, when the state being 
searched is , we apply the transformation as following: s

       xWyz ss      (27) 

where . Then the new features are applied in 
the Viterbi search progress, using the output probability 

1
xsxs RRW

)|( sszp , where s denotes the acoustic model of the 

new feature .sz

5. EXPERIMENT RESULTS 

In our recognition system, there are 1254 Chinese syllables; 
each syllable is made up of one initial and one final. There 
are 100 initials and 164 finals in total. As one initial is 
divided into two states and one final into four, each syllable 
is modeled as a six-state HMM. Thus, totally, we have 856 
states, each being modeled as a single Gaussian with full 
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covariance. The acoustic feature vector consists of 45 
features formed by 14 Mel-frequency cepstrum coefficients 
with their 1st and 2nd derivatives and 1st and 2nd derivative of 
the frame energy. 

To evaluate the performance of spatial correlation 
transformation, experiments were carried out on a Chinese 
LVCSR task, and the speech database is provided by 
National 863 High Technology Project. The training data 
comprises of 650 sentences each from 76 female speakers, 
the same amount of data from another 7 female speakers are 
used as the testing data. 

In the experiments, we focus on the acoustic part. The 
speech utterances are recognized to be free syllable strings 
without any grammar constraints, and the result is organized 
into syllable-lattices. No language model is used, and the 
Syllable Error Rate (SER) results are reported for 
performance evaluation. 

Eigenvoice (EV) has good performance in speaker 
adaptation, especially when the adaptation data is very 
limited. 

In order to evaluate our new algorithm (MC-SCT) for 
utilizing spatial correlation information, we compared its 
performance with EV. These experiments were carried on 
enrolled and batch mode, although MC-SCT can be 
implemented easily on instantaneous and on-line mode. For 
each test speaker, an increasing number of sentences were 
used as history data, with the recognition result of SI model 
as the state labels, while all the sentences were used as test 
data. The average result is shown in Table 1.

Table 1 Comparison of SER for MC-SCT and EV 
nSent MC-SCT EV

0 30.26% 30.26%
10 25.77% 25.74%
20 25.65% 25.61%
40 25.44% 25.47%
60 25.27% 25.34%
80 25.16% 25.33%

As shown in Table 1, MC-SCT obtains obvious SER 
decline with few history sentences. And the SER keeps on 
descending as the history sentence number increases. It 
shows that MC-SCT and EV have similar performance 
when the adaptation data is very limited. Further more, the 
asymptotic property of MC-SCT is better than EV. When 
the sentence number is 10, the relative decline of SER is 
14.8% for MC-SCT and 14.9% for EV. When the sentence 
number is 80, it is 17.6% for MC-SCT and 17.1% for EV. 

6. CONCLUSION 

Spatial correlation is very important in describing the 
relationship among the acoustic units. In this paper, a 
scheme based on minimum covariance to utilize the spatial 
correlation information efficiently is proposed. Instead of 
adapting the acoustic models to fit for the speaker and 
environment as the speaker adaptation methods do, this 
approach is applied to find refined acoustic features and 

corresponding models which can achieve better 
discriminative performance. Experimental results show that 
there is observable SER decline over the SI recognition 
system in unsupervised mode. And compared with the 
Eigenvoice approach, it obtains better asymptotic property. 
Further more, it is easily to be applied in instantaneous and 
on-line mode with low computation cost. With the 
recognition process going on, and longer history and more 
data gained, lower SER can be obtained.  

It is just the beginning for us to utilize spatial 
correlation information in decoding process of speech 
recognition. There is still much further work to do in the 
future. From the result we already have, we believe that this 
approach has big potential. 
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