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ABSTRACT

Part-of-speech tagging is a necessary pre-processing step for
many natural language tasks. Recent statistical approaches, such as
conditional random fields, rely on well chosen feature functions to
ensure that important characteristics of the empirical training distri-
bution are reflected in the trained model. In practice, however, it is
not always clear how to best select these feature functions in order
to obtain a suitably robust model. This paper proposes an alternative
strategy based on the principle of latent analogy. For each sentence
under consideration, we construct a neighborhood of globally rele-
vant training sentences through an appropriate data-driven mapping
of the input surface form. Tagging then proceeds via locally opti-
mal sequence alignment and maximum likelihood position scoring.
Empirical evidence shows that this solution is competitive with state-
of-the-art Markovian techniques.

Index Terms— Syntactic labeling, statistical tagging, POS dis-
ambiguation, global filtering, latent semantic mapping.

1. INTRODUCTION

Part-of-speech (POS) tagging is a necessary pre-processing step for
many natural language processing (NLP) tasks, from text chunking
to semantic role labeling. As POS tags augment the information con-
tained within words by explicitly indicating some of the structure
inherent in language, their accuracy is often critical to such down-
stream NLP applications.

While non-model-based solutions have also been proposed [1],
in recent years tagging has traditionally involved HMMs: cf., e.g.,
[2], [3]. Given a suitable text corpus, HMMs can easily be trained
to identify the most likely sequence of tags for the observed set of
words in a given sentence. Their generative nature, however, forces
them to effectively set aside valuable model parameters to account
(unnecessarily, in this case) for the observation sequence.

This has sparked interest in conditional models, like maximum
entropy Markov models (MEMMs), which can directly account for
the conditional probability of the tag sequences given a particular
observation sequence: cf., e.g., [4], [5]. MEMMs rely on a set of fea-
ture functions acting as marginal constraints to ensure that important
characteristics of the empirical training distribution are reflected in
the trained model. With well chosen functions covering sufficiently
rich features of the training data, maximum entropy models can re-
sult in a substantially reduced tag error rate compared to HMMs [5].
Yet they can also suffer from label bias, whereby states with low
entropy transition distributions are unduly favored [6].

Conditional random fields (CRFs) were originally introduced to
overcome this weakness, and thus take full advantage of the con-
ditional probabilistic framework [6]. These models are a form of
undirected graphical models, which define a single log-linear distri-
bution over the entire tag sequence given a particular observation se-
quence. This single distribution allows states to pass on any amount

of probability mass to their successor states, thereby preventing la-
bel bias. As a result, CRF taggers are nominally able to outperform
both HMM- and MEMM-based systems. However, this can only
be achieved given adequate initial conditions, which may require an
MEMM to be trained as initial starting point [6].

Hence, in practice, the tagging accuracy of both MEMMs and
CRFs is essentially contingent on the specification of a high quality
set of feature functions. Such selection is likely to depend on at least
some measure of task-specific linguistic knowledge, complicating
deployment across different applications.

The goal of this paper is to explore a completely different av-
enue, and design a POS tagger based on the principle of latent anal-
ogy. As the name implies, the inspiration for this strategy comes
from an approach recently developed for the purpose of grapheme-
to-phoneme conversion, dubbed pronunciation by latent analogy [7].
This effort itself evolved as an unconventional application of latent
semantic mapping (LSM), a data-driven framework for modeling
global relationships implicit in large volumes of data [8]. The ob-
jectives are to (i) use LSM to construct, for each sentence under con-
sideration, a neighborhood of globally relevant training sentences,
(ii) extract the associated POS sequences, and then (iii) leverage this
targeted evidence in the tagging process. Interestingly, in most cases
POS disambiguation seems to emerge automatically as a by-product
of LSM-based semantic consistency, which de facto bypasses the
need for any explicit linguistic knowledge.

The paper is organized as follows. The next section motivates a
latent analogy approach to the problem, and Section 3 gives a gen-
eral overview of the proposed framework. In Sections 4 and 5, we
address the two main building blocks of tagging by latent analogy,
sentence neighborhoods and sequence alignment. Finally, Section 6
reports the outcome of experimental evaluations conducted on two
different corpora, one primarily for the purpose of benchmark com-
parisons, and the other of interest in the context of a concatenative
speech synthesis task.

2. MOTIVATION

Given a natural language sentence comprising L words, the aim
of POS tagging is to annotate each observed word wi with some
suitable part-of-speech pi (1 ≤ i ≤ L). Representing the over-
all sequence of words by W and the corresponding sequence of
POS by P , we therefore need to maximize the conditional prob-
ability Pr (P |W ) over all possible POS sequences P . Maximum
entropy solutions rely on log-linear models involving feature func-
tions defined over local states in the associated graph, where each
feature function expresses some selected characteristic of the empir-
ical training distribution [6]. Due to the intrinsic lopsided sparsity
of language, however, in practice many distributional aspects cannot
be properly taken into account. In those specific contexts where they
happen to matter, this may result in erroneous tagging.
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To illustrate, consider, for example, the sentence:

Jet streams blow in the troposphere. (1)

whose correct tagging reads:

jet/NN streams/NNS blow/VBP in/IN the/DT troposphere/NN (2)

with the standard Penn Treebank POS tagset [9]. Using the CRF
implementation available in [10], we obtain instead:

jet/NN streams/VBZ blow/NN in/IN the/DT troposphere/NN (3)

which incorrectly resolves the inherent POS ambiguity in the sub-
sequence “streams blow.” The problem, of course, is that from a
purely syntactic viewpoint both interpretations are perfectly accept-
able (a frequent situation due to the many dual noun-verb possibili-
ties in English). What would clearly help in this case is taking into
account the semantic information available. Indeed the word “tro-
posphere,” for example, would seem to make the verbal usage of
“blow” quite a bit more likely.

This observation motivates an LSM approach to the problem, so
dimensionality reduction can be leveraged to extract global informa-
tion about the sentence to be tagged. LSM has already proven effec-
tive over the past two decades in a variety of other fields, including
query-based information retrieval, word clustering, document/topic
clustering, large vocabulary language modeling, and semantic infer-
ence for voice command and control [8]. In the present case, LSM
is used at the sentence level, relying on co-occurrence relationships
in the training corpus in order to map each training sentence onto
an appropriate vector space. Once this is done, the projection of the
current sentence onto that space can then be exploited to inform the
construction of the desired POS sequence. This strategy, although
very different from conditional Markov approaches, adheres to the
same general principle of using empirical evidence as a constraint in
parameter estimation.

3. TAGGING BY LATENT ANALOGY
The associated framework is illustrated in Fig. 1. During the training
phase, a global LSM analysis is performed on the available corpus.
This leads to a representation of each training sentence in terms of
a sentence anchor in a suitable feature space. Each sentence anchor
can then be associated with its corresponding POS sequence from
the labeled training corpus. During the tagging phase, the same LSM
analysis is performed on the input sentence, with the goal of deter-
mining which sentences from the training data are most related to it.
This leads to the concept of sentence neighborhood. Loosely speak-
ing, two sentences belong to the same neighborhood if they share
the same underlying subject matter (as modeled by LSM). Note that
this notion of neighborhood is markedly different from the one in
[11], where the goal was to collect implicit negative evidence about
the overall syntax of the sentence. Here the objective is to assess the
semantic “closeness” between the input and each training sentence.
If a training sentence is deemed “similar” enough, it is added to the
sentence neighborhood of the input sentence.

Thus, neighborhood construction can be viewed as a mechanism
to zero in on “relevant” (global) features of the training data, which
is somewhat analogous to selecting “important” distributional as-
pects in MEMM-CRF. In that sense, LSM plays a role comparable
to that of feature selection in the conventional framework. In fact,
it is clear that LSM shares a major advantage of feature functions
(compared to standard HMM), namely the ability to integrate long-
distance dependencies between observation elements (albeit in the
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Fig. 1. POS Tagging by Latent Analogy Framework.

form of global co-occurrences, instead of non-independent overlap-
ping characteristics of the training distribution). However, here this
integration happens automatically as a result of (data-driven) neigh-
borhood construction, rather than as a consequence of injecting ex-
ternal (and likely task-dependent) linguistic knowledge. In addition,
the notion of “closeness” is defined across the entire corpus, so fea-
tures with higher relevance across multiple contexts can be expected
to contribute more prominently.

Once a sentence neighborhood is specified for a given input sen-
tence, the corresponding POS sequences are extracted accordingly.
By construction, these sequences have the property that they contain
at least one sub-sequence which is “locally close” to the POS se-
quence sought. Assuming that the global properties of the sentence
implicitly entail POS consistency at that location, aligning these sub-
sequences allows us to expose promising common elements between
them. The more common a particular POS in a particular position,
the more likely it is to correspond to a correct tag. The maximum
likelihood estimate at every position is therefore the best candidate
for the final POS sequence. It remains to proceed in a left-to-right
fashion, using words in the input sentence as sequential “landmarks”
acting like local constraints, to let the final tags emerge sponta-
neously from the alignment process.

The procedure of Fig. 1 is entirely data-driven and requires no
human supervision (beyond the original annotation of the training
corpus). Compared to MEMM-CRF, it essentially decouples feature
selection from POS sequence assembly. Now neighborhood genera-
tion involves gathering globally pertinent information on the obser-
vation side, while final assembly involves exploiting locally consis-
tent constraints on the POS side. This is particularly effective when
it comes to disambiguating alternative POS sub-sequences on the
basis of semantic usage.

4. SENTENCE NEIGHBORHOODS
Let T , |T | = N , be a collection of training sentences, where each
word has been annotated with its corresponding POS, and V , |V| =
M , the associated set of all n-grams observed in the collection (i.e.,
the underlying vocabulary if n = 1), including proper markers for
punctuation, etc. The LSM paradigm defines a mapping between the
discrete sets V , T and a continuous vector space L, whereby each
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Table I. Sentence Neighborhood for Sentence (1).

jet/NN propulsion/NN also/RB makes/VBZ flight/NN possible/JJ at/IN extremely/RB high/JJ altitudes/NNS ,/, and/CC even/RB
in/IN outer/JJ space/NN

these/DT superalloys/NNS are/VBP important/JJ components/NNS of/IN jet/NN engines/NNS and/CC spacecraft/NN

high-speed/JJ streams/NNS of/IN the/DT solar/JJ wind/NN appear/VBP as/IN the/DT sun/NN ’s/POS activity/NN increases/NNS
this/DT device/NN sprays/VBZ streams/NNS of/IN vapor/NN that/WDT sweep/VBP gas/NN molecules/NNS out/IN of/IN the/DT

enclosed/VBN space/NN
grade/NN separations/NNS are/VBP often/RB used/VBN to/TO separate/VB crossing/VBG streams/NNS of/IN traffic/NN

extremely/RB strong/JJ winds/NNS blow/VBP in/IN this/DT layer/NN
westerlies/NNP and/CC trade/NN winds/NNS blow/VBP away/RB from/IN the/DT thirty/CD degrees/NNS latitude/VBP belt/NN
similar/JJ winds/NNS that/WDT blow/VBP in/IN other/JJ parts/NNS of/IN the/DT world/NN are/VBP called/VBN foehns/NNS

the/DT temperature/NN in/IN a/DT thin/JJ layer/NN of/IN the/DT troposphere/NN then/RB increases/VBZ with/IN altitude/NN
other/JJ parts/NNS of/IN the/DT atmosphere/NN are/VBP above/IN the/DT troposphere/NN
most/JJS clouds/NNS occur/VBP within/IN the/DT troposphere/NN

n-gram in V is represented by a vector ūi in L, and each training
sentence in T is represented by a vector v̄j in L. The vector space
L is known as the latent semantic space associated with the training
collection.

We follow the established LSM mechanisms for deriving this
vector space L, as well as mapping the input sentence to it. For the
sake of brevity, the reader is referred to [12] for the details of this
procedure. The steps involved are: (i) constructing the (M ×N ) co-
occurrence matrix W , with entries which suitably reflect the extent
to which each n-gram in V appeared in each sentence in T ; (ii)
performing a singular value decomposition (SVD) of W , keeping
only the R leading singular values; (iii) augmenting the matrix W
to find the proper representation of a given input sentence in the
resulting vector space of dimension R; and (iv) defining a suitable
closeness measure on this R-dimensional feature space [12].

Using this closeness measure, it is then a simple matter to rank
all training sentences in decreasing order of closeness to the repre-
sentation of the input sentence. The associated sentence neighbor-
hood follows by retaining only those instances whose closeness mea-
sure is higher than a pre-set threshold. To illustrate, an actual (par-
tial) sentence neighborhood for the example selected in Section 2
is reported in Table I. For reasons to become clear shortly, in this
case we have ordered the (adequately tagged) sentences separately
for each reference word (in bold).

5. SEQUENCE ALIGNMENT
Since the sentence neighborhood thus constructed is made up of
training sentences, associated POS sequences are readily available
from the labeled training corpus. In principle, each of these POS
sequences contains at least one sub-sequence which is germane to
the input sentence. Thus, the final POS sequence can be assembled
by judicious alignment of appropriate POS sub-sequences from the
sentence neighborhood.

In pronunciation by latent analogy, a similar alignment problem
is solved by using a sequence analysis approach commonly used in
molecular biology [7]. But, in this application, the relevant phoneme
sub-strings have to emerge from the alignment itself. Here, the prob-
lem is comparatively simpler, because each POS value is attached to
its own word, whose identity is known. As a result, it is only neces-
sary to align sub-sequences in the vicinity of each word, as opposed
to the added complexity of aligning complete POS sequences.

We therefore proceed word by word, collecting at each step the
POS sub-sequences from entries in the sentence neighborhood con-

IN         DT      troposphere/NN      RB

NNS            WDT          blow/VBP       IN         JJ
NN             NNS           blow/VBP       RB        IN
JJ              NNS           blow/VBP       IN         DT

VB     VBG       streams/NNS       IN              NN
NN     VBZ       streams/NNS       IN              NN
~          JJ         streams/NNS       IN              DT

IN       jet/NN         NNS               CC
~        jet/NN          NN                RB

IN         DT      troposphere/NN       ~

~      jet/NN    streams/NNS   blow/VBP     in/IN    the/DT   troposphere/NN     ~

IN         DT      troposphere/NN       ~

Fig. 2. Example of Sequence Alignment for (1).

taining the relevant reference word. In accordance to the remark
above, we only retain (2K + 1) POS in each sub-sequence, cen-
tered around that of the current word. Proceeding left-to-right, we
thus obtain a set of POS values for each word, where each value
is presumably consistent with global information extracted from the
training corpus and germane to the input sentence. The maximum
likelihood estimate is then computed for every word, by simply us-
ing the observed POS counts at this position. The outcome is the
final POS sequence sought.

This process is illustrated in Fig. 2 for the sentence (1) of Sec-
tion 2. Given the sentence neighborhood listed in Table I, we proceed
left to right in the order of each reference word to obtain the align-
ment presented in the top box. Note that in this example we retain
POS sub-sequences using a local scope of size K = 2. Maximum
likelihood POS assembly then leads to the final POS sequence given
in (2). In this case, tagging by latent analogy is able to satisfactorily
resolve the inherent POS ambiguity discussed previously.

6. EXPERIMENTS
As pointed out in [3], most tagging accuracies reported in the litera-
ture are not directly comparable, because of different tagsets, differ-
ent test corpora, or possibly different randomized and irreproducible
splits of training and test data. The closest thing to a canonical setup
is the training, development, and test split of the Penn Treebank de-
scribed in [2], which was also used in [3] and [5] for testing their
HMM and MEMM taggers, respectively.
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Table II. Results on Penn Treebank.

Tagging Approach Tag Error Rate

Baseline (Frequency) 7.8 %
Standard HMM 4.1 %
Contextualized HMM 3.4 %
Feature-Rich MEMM 2.8 %
CRF 2.8 %

Tagging by Latent Analogy 3.5 %

We thus followed [3] in the allocation of sections 00-18 for train-
ing, 19-21 for development, and 22-24 for testing, as well as other
aspects of the experimental setup, such as OOV elimination and lexi-
con filtering. As baseline we also used the same tagger as [3], i.e., the
tagger which always chooses a word’s most frequent tag regardless
of context. We then compared the CRF implementation in Section 2
with tagging by latent analogy as described in Sections 4–5.

In the latter implementation we used n = 1 (unigrams only),
which led to values of M and N on the order of 30, 000 and 40, 000,
respectively. This corresponds to a (sparse) matrix W of moderate
size, for which the SVD can be done efficiently.1 Sentence anchors
were obtained using R = 100 for the order of the decomposition,
and on the average each sentence neighborhood comprised about
50 entries. Sequence alignment proceeded using a local scope of
K = 2 POS on each side, and the final POS sequence was produced
using the maximum likelihood estimate at each position, with tag
frequency used as tie-breaker, as necessary.

The results are summarized in Table II, which also recalls the re-
sults obtained on the same test set with a standard HMM model, the
contextualized HMM model of [3], and the carefully tuned feature-
rich MEMM approach of [5], as reported in [3].

It can be seen that the performance of tagging by latent analogy
is roughly comparable to that of contextualized HMM, but substan-
tially inferior to MEMM-CRF. At this point we wondered whether
this outcome might somehow be linked to the fairly homogeneous
writing style characteristic of the data. To get a more precise idea
of tagging robustness, we considered another test set, extracted from
an internal corpus used to record speech segments for concatenative
speech synthesis (cf. [13]). This corpus, by construction, contains
more diverse material assembled from a greater variety of sources,
and in particular includes a greater proportion of text written in a
more casual, spoken style (as can be found in blogs, for instance).
The results, on a test set of approximately 2500 sentences, are sum-
marized in Table III.

This time the performance of tagging by latent analogy is
roughly the same as that of CRF. In fact, a comparison between
Table II and Table III shows that latent analogy seems largely un-
affected by the underlying changes, while CRF performance de-
grades by about 26%. This suggests that tagging by latent analogy is
more robust across a greater variety of different syntactic contexts,
whereas in order to optimally reflect the new material the feature
functions in MEMM-CRF would probably need to be appropriately
fine-tuned. This remark is consistent with our initial conjecture that
global information useful to POS disambiguation can be captured
more systematically (and expediently) with LSM than via conven-
tional feature selection.

1We performed the SVD using the single vector Lanczos method as done
in [12]. To fix ideas, on a 2.33 GHz Intel Core 2 Duo CPU, this took less
than a minute of CPU time.

Table III. Results on Speech Synthesis Corpus.

Tagging Approach Tag Error Rate

Baseline (Frequency) 9.9 %
Tagging by Latent Analogy 3.6 %
CRF 3.4 %

7. CONCLUSION
We have proposed an alternative strategy for POS tagging, adapted
from pronunciation by latent analogy, which focuses on two loosely
coupled sub-problems: (i) extract from the training corpus those sen-
tences which are the most germane in a global sense, and (ii) exploit
the evidence thus gathered to assemble the POS sequence based on
local constraints. We address (i) by leveraging the latent topicality of
every sentence, as uncovered by a global LSM analysis of the entire
training corpus. Each input surface form thus leads to its own cus-
tomized neighborhood, comprising those training sentences which
are most related to it. POS tagging then follows via locally optimal
sequence alignment and maximum likelihood position scoring, in
which the influence of the entire neighborhood is implicitly and au-
tomatically taken into account. This method was observed to be ef-
fective on two different corpora: a subset of the Penn Treebank suit-
able for conducting benchmark comparisons, and an internal corpus
of more diverse material used in a concatenative speech synthesis
task. In practice, tagging by latent analogy is likely to achieve close
to the same level of performance as maximum entropy tagging, at
a fraction of the cost. This bodes well for its general deployability
across a wide range of applications.
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