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ABSTRACT
The goals of this study were to evaluate the synthesis of visible 
speech that was based on 3-D motion data using second-order 
isomorphism. To do this, word stimuli were generated for 
perceptual discrimination and identification tasks. Discrimination 
trials were based on word-pairs that were predicted to be at four 
levels of perceptual dissimilarity. Results from the discrimination 
tasks indicated that visual synthetic speech perception maintained 
the dissimilarity structure of visual natural speech perception. This 
study demonstrated that the relatively sparse 3-D representations 
of face motion could be used to synthesize visual speech that 
perceptually approximate visual natural speech, suggesting that 
synthesizer development and psychophysics can benefit mutually 
when the goals are aligned.1

Index Terms—Visual speech synthesis, visual speech 
perception, second-order isomorphism, dissimilarity

1. INTRODUCTION 
Research on audiovisual speech perception has demonstrated the 
multi-modality of human speech perception [1, 2]. People with 
normal hearing and vision, as well as people with hearing 
impairments, rely on visual speech information when the acoustic 
signal is not loud enough and/or is degraded by noise. An 
automated visual speech synthesizer would allow for generating 
new, spontaneous, and quantitatively controlled visual speech 
materials for commercial, research, and clinical applications. Our 
interest in a synthesized talker is primarily for perceptual and 
neural research, and for clinical applications. A synthetic talker 
would allow precise control over stimulus attributes, a fundamental 
requirement for human perception research.

Talking face animations are now available, but their ability to 
convey realistic speech information remains inadequate. Perhaps, 
this is because visual speech synthesis has not taken full advantage 
of the approach that greatly benefited development of acoustic 
speech synthesis for research. Acoustic speech synthesis was 
developed in the context of numerous careful acoustic 
measurements and perceptual experiments that were carried out 
over many years [3]. For example, early work on acoustic speech 
perception employed the pattern playback device, which 
synthesized a schematic representation of the speech signal [4]. 
This device assisted, for example, in discovering relationships
between auditory segmental perception and formant frequencies. 

1 Work was supported in part by an NSF award IIS 0312434 
(Bernstein, PI). 

Currently, meager fundamental knowledge exists concerning 
optical phonetics the quantifiable attributes of the optical speech 
signal that perceivers use to perceive speech [5-7]. We believe that 
such knowledge is necessary for developing visual speech 
synthesis that presents the same information produced by humans. 
The current study was designed to investigate how results in a 
visual speech perception experiment might be used to give 
feedback to refine a synthesizer. 

The need for detailed optical phonetic studies can be 
appreciated on consideration of several facts about visual speech 
perception. Although visual speech signals convey less phonetic 
information than do acoustic speech signals under good listening 
conditions, visible speech affords adequate phonetic information to 
recognize a high percentage of words, as demonstrated by expert 
deaf lipreaders [8]. 

The realism we seek to achieve in visual speech synthesis is 
the information needed to perceive words with the same accuracy 
as can be obtained by expert deaf lipreaders. However, current 
evaluation methods for visual speech synthesizers are generally not 
designed for evaluation of phonetic detail but instead for 
evaluation of the general appearance of naturalness, the boost in 
intelligibility obtained under noisy audiovisual conditions, and/or 
identification within broad viseme classes [9-11].  

Nevertheless, having set as the goal phonetic accuracy, a 
problem is to determine what attributes of natural optical signals 
are perceptually relevant to phonetic perception. The visual speech 
stimulus is a complex display. Innumerable cues might be relevant 
to the expert perceiver. Shepard and Chipman [12] considered the 
problem of establishing the isomorphism between physical stimuli 
and internal (perceptual or neural) representations. They noted that 
internal representations are unlikely to be structurally isomorphic 
with stimuli in the sense that the internal representation of a square 
is not likely to be square. In order to approach the problem of 
establishing relationships between complex stimuli and 
internal/perceptual/neural representations, they argued that an 
“isomorphism should be sought – not in the first-order relation 
between (a) an individual object, and (b) its corresponding internal 
representation – but in the second-order relation between (a) the 
relations among alternative external objects, and (b) the relations 
among their corresponding internal representations. Thus, although 
the internal representation for a square need not itself be square, it 
should (whatever it is) at least have a closer functional relation to 
the internal representation for a rectangle than to that, say, for a 
green flash or the taste of a persimmon” (p. 2). That is, in the 
absence of a list of optical phonetic cues, the researcher would be 
advised to seek isomorphism between physical dissimilarities and 
perceptual dissimilarities. 
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In [6], a robust second-order isomorphism relationship was 
established based on dissimilarities among sparse 3-D optical point 
representations of visible speech and perceptual dissimilarities 
among videorecorded consonants. In the Jiang-et-al study, subjects 
visually identified the 23 initial consonants of English spoken by 
four talkers. The resulting confusion data were transformed into 
perceptual spaces via multidimensional scaling. Then Euclidean 
distances were obtained between all pairs of phonemes. The 
variance accounted for in the perceptual dissimilarity measures by 
the physical dissimilarities computed using the 3-D point data 
ranged between 36% and 72% across talkers and vowels (see [6] 
for details). In other words, the visual perceptual structure was 
preserved in the sparse optical data. An implication following this 
demonstration is that synthetic speech should preserve the same 
second-order isomorphism relationship. That is, the dissimilarity 
relationships in natural video speech should be represented in the 
synthetic video speech.  

The literature demonstrates that segmental dissimilarities can 
be used to predict the intelligibility of lipread words [13, 14]. 
Thus, a visual speech synthesizer should produce natural 
dissimilarity relationships for both segments and words. 
Furthermore, perceptual tests of dissimilarity typically involve 
discrimination tests which can be used to efficiently evaluate 
synthetic stimuli. 

In the present study, words, instead of phonemes or 
consonant-vowel syllables, were used, because approximating 
contextual information (coarticulation) is a critical aspect of visual 
speech synthesis [11]. In addition to same word pairs, stimulus 
word pairs were generated that were predicted, based on segmental 
perceptual data, to be at near, medium, and far perceptual 
distances; participants were presented with the word pairs in a 
same-different discrimination task; and the word pairs comprised 
either two natural video tokens or one synthetic token paired with 
one natural video token. If the predicted dissimilarity relationships 
were obtained with the video-video word pairs, that result would 
further validate the use of segmental measures to predict word-
level dissimilarity. If the predicted dissimilarity relationships were 
also obtained with video-synthetic word pairs, that would confirm 
that the sparse optical data preserved dissimilarity relationships at 
the word level. Deviations from the natural dissimilarity structure 
would point to areas for improvement in the synthesizer. 
Subsequent research could focus on manipulation of the sparse 
data so as to achieve more accurate dissimilarity relationships as 
evaluated using the discrimination paradigm. For those word pairs 
whose perceptual dissimilarities were different from the predicted 
dissimilarities, a pair-wise tuning on the synthesizer could also be 
performed.

A variety of approaches can be imagined for realizing a visual 
speech synthesizer [15, 16]: wireframe, muscle-based, and image-
based methods. Furthermore, a visual speech synthesizer can be 
driven with rule-based, concatenative, acoustics-driven, or direct-
physical-measures-driven methods [16]. Wireframe models are 
defined by a set of 3-D polygonal meshes that are controlled with 
simple geometric operations. Muscle models use polygonal meshes 
simulating muscle activities that are directly controlled by 
muscular activations. Image-based methods reproduce speech 
movements by morphing and interpolating existing speech images. 
The present study used a wireframe face model and focused on 
studying the perceptual effects of synthetic speech driven directly 
from the 3-D optical recordings we obtained as part of the project.

2. METHOD 
2.1. Visual speech synthesizer 

A face animation model was realized, incorporating a mesh of 3-D 
polygons that define the head and its parts [17]. The original 3-D 
face model was obtained from www.digimation.com. This model 
was later edited (addition, deletion, and modification of some 
vertices, polygons, and textures) to have 1915 vertices and 1944 
polygons. An algorithmic layer allows the mesh to be deformed for 
performing facial actions as well as preventing errors (such as 
incursion of the lower lip into the volume of the upper lip). Optical 
trajectories were registered (calibrated) onto the key points on the 
face model, and these key points were used to deform the rest of 
the face vertices with a modified radial basis functions [17]. Radial 
basis functions have been shown to be effective [9].  

Texture is re-mapped onto the deformed face that is then 
rendered and animated with appropriate lighting and background 
color using the openGL graphics application-programming 
interface. The synthetic face was scaled and shifted to have the 
same position and size as the natural face (see Figure 1).  

Figure 1. Synthesis: (a) face motions tracked using 33 retro-
reflectors; (b) reconstructed and smoothed motion trajectories 
compensated for head and eyebrow motion and missing data; (c) 
motion data normalized and registered to key face points; and (d) 
whole face deformed frame-by-frame using key face points.

2.2. Stimuli

2.2.1. Recorded speech materials 
An experienced American-English talker with relatively high 
visual intelligibility said the stimuli out loud inside a sound-treated 
booth. Audio, video, and 3-D optical data were recorded 
simultaneously and synchronized [18]. The video recording 
equipment was a production quality Sony digital camera and video 
recorder. Face motion was captured with a 120-Hz Qualisys 
optical motion capture system using three infrared emitting-
receiving cameras and 33 optical retro-reflectors (see Figure 1). 
Two tokens each of 141 monosyllabic words were recorded.  

2.2.2. Data processing 
Seventy-six monosyllable words were manually segmented with a 
closed mouth in the beginning and the end. These segmented video 
clips were digitized, cropped to a size of 720x480 pixels, and built 
into 30-Hz interlaced video files.  

Reconstructed 3-D motion data were processed to remove 
head and eyebrow motion, recover missing data, remove noise, 
normalize the head-size, and smooth the motion [17, 18]. For those 
76 video clips, the corresponding 3-D motion data segments were 
retrieved and were down-sampled to 60 Hz to drive the face 
animation model directly with a resolution of 720x480 pixels. The 
resulting AVI videos were then interlaced to produce 30-Hz video.

The natural and synthetic video segments without audio were 
compressed, and all of the resulting compressed video clips were 
concatenated into a single large video file that was authored to a 
DVD to allow frame based searching and random access.
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2.2.3. Stimulus selection 
Stimuli were selected for discrimination and identification tasks. 
For one set of word pairs for the discrimination task, thirty-two 
synthetic tokens were generated. Each token was in a set with four 
natural video tokens chosen to vary in their perceptual distance 
from the synthetic token. Each set comprised a same, near,
medium, and far word. The distances were computed using a 
perception-based cost matrix [19]. There were 62 words total 
comprising the natural video comparisons across trials. Same pairs 
comprised the synthetic stimulus and the natural video token that 
was recorded along with the 3-D optical recording. 

Another set of discrimination pairs comprised the same word-
pairs, but all of the tokens were the natural videorecordings. The 
“same” pairs comprised different tokens of the same words. 

2.3. Perceptual experiments  
Eight normal-hearing participants with above-average lipreading 
ability were recruited. For the discrimination (AX, same-different) 
trials involving synthetic speech (AXS), a synthetic token was 
presented, followed by a natural video token. For the 
discrimination trials with natural video only (AXV), two natural 
video tokens were presented sequentially. All tokens were 
presented without audio. Following the discrimination task, 
participants performed an open-set identification task. For the IDS 
condition, the 32 synthetic tokens were presented in pseudorandom 
order. For the IDV condition, the 62 natural video tokens were 
presented in pseudorandom order. Participants viewed each 
stimulus and typed at a PC the spoken word they had seen.  

3. RESULTS 
3.1. Discrimination 

Figure 2. Boxplots (left; AXS and AXV) and scatterplot (right; AXS 
versus AXV) of percent different responses.

A two-way [Dissimilarity (same, near, medium, far) x Media 
(synthetic, natural)] repeated measures ANOVA was conducted 
based on the percentage of different responses with regard to word 
pairs. As predicted, Dissimilarity reliably affected percent different 
scores [F(1.38,42.68) = 287.3, p<.001; Huynh-Feldt adjustment 
used to correct for the violation of the sphericity assumption]. 
Planned comparisons confirmed that medium pairs were labeled 
different at a higher rate than near pairs, and near pairs more than 
same pairs (all ps<.001). Medium and far pairs did not differ. 

The main effect of Media was reliable [F(1,31)=6.2, p<.02]. 
The Dissimilarity x Media interaction was significant 
[F(2.07,64.07)=24.8, p<.001], reflecting the overall higher 
accuracy for the AXV condition. Higher accuracy indicated that 
the rate of different responses was higher for different pairs but 
lower for same pairs (see Figure 2). Also in Figure 2 (right), 
percent different scores for AXS were correlated with those for 
AXV [R2=.78, F(1,126)=446.2, p=.000], confirming the 
effectiveness of the synthetic speech in approximating visual 
natural speech in terms of perception.  

Proportion different scores for near, medium, or far pairs in 
AXS and AXV were submitted to linear regression analyses using 
as the predictors the pre-computed natural log-transformed 
dissimilarity measures. Figure 3 shows that the dissimilarity scores 
accounted for a significant portion of the variance in the percent 
different responses for AXS [R2=.53, F(1,94)=107.0, p<.001] and 
for AXV [R2=.31, F(1,94)=44.0, p<.001].  

In Figure 3, some pairs (e.g., needs-case, best-space, and sent-
tax) were far from the regression line for AXS. However, these 
pairs were close to the regression line for AXV. This implies that 
the synthesizer did not adequately differentiate words in these 
pairs. For example, the tongue and teeth were not modeled in the 
present visual speech synthesizer. As a novel approach, we can 
focus on these outlier word pairs to fine-tune the synthesizer. 

Figure 3. Percent different scores for each word pair in AXS 
(left) and AXV (right) were plotted against distance estimates 
(pre-computed using the perception-based cost matrix).  

3.2. Identification 
For the open-set word identification task, responses were scored in 
terms of phoneme accuracy and uncertainty [8]. The open-set word 
identification with synthetic speech was shown to be highly 
inaccurate. Thus, while the synthesizer preserved natural 
dissimilarities, it was still quite deficient in optical phonetic detail. 

Analyses were undertaken to determine whether the incorrect 
identification responses were perceptually related to the stimuli or 
chosen without regard to the stimuli. The contemporary view of 
spoken word recognition is that identification entails 
discrimination of competing lexical items in long-term memory 
[20]. The prediction here is that perceptual errors in word 
identification result in closer stimulus-response distances than 
words selected independently of perception. To investigate this, 
dissimilarity was computed between stimulus words and 
corresponding incorrect responses. Only incorrect responses 
resulting from the 32 words that were presented as both 
synthesized and natural video words were used. Additionally, 
dissimilarities were computed between stimulus words and words 
randomly selected from an online dictionary [21]. Results 
indicated that the mean dissimilarities for the actual stimulus-
response pairs [M=470 (SD=157) for IDS and M=242 (SD=153)
for IDV] were significantly less than those from random selection 
[M=680 (SD=89); F(2,54)=79.7, p<.001]. 

Phoneme identification accuracy. Given that the synthetic 
stimuli grossly sampled the motion of the talking face, and that 
there was no indication of tongue gestures in the synthesis, the 
expectation was that certain phonemes would be less accurately 
conveyed than others. The stimulus-response pairs were submitted 
to an alignment procedure to obtain percent correct scores for each 
phoneme [19]. Results showed that for many phonemes the natural
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and synthetic video stimuli were proportionally similar. In Figure 
4, the distance between the two lines (slope=1) was fixed to be 
30%, and the two lines were positioned so that the greatest number 
of phonemes fell between them (62.5%). Some synthetic phonemes 
performed much worse than their natural counterparts. Those 
phonemes likely did not provide sufficient information regarding 
lip rounding (/o, u, U, W/) and tongue position (/l, g, T, S/). 
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