
VOICE CONVERSION WITH LINEAR PREDICTION RESIDUAL ESTIMATON 
 

Winston S. Percybrooks1,2, Elliot Moore II1 
 

1 Department of Electrical and Computer Engineering, Georgia Institute of Technology, Savannah, 
Georgia, USA  

2 Department of Electrical and Electronics Engineering, Universidad del Norte, Barranquilla, Colombia 
 

ABSTRACT 
 
The work presented here shows a comparison between a voice 
conversion system based on converting only the vocal tract 
representation of the source speaker and an augmented system that 
adds an algorithm for estimating the target excitation signal.  The 
estimation algorithm uses a stochastic model for relating the 
excitation signal to the vocal tract features.  The two systems were 
subjected to objective and subjective tests for assessing the 
effectiveness of the perceived identity conversion and the overall 
quality of the synthesized speech.  Male-to-male and female-to-
female conversion cases were tested.  The main objective of this 
work is to improve the recognizability of the converted speech 
while maintaining a high synthesis quality. 
 

Index Terms— Voice conversion, LP residual 
estimation, GMM, Linear spectral frequencies 
 

1. INTRODUCTION 
 
Voice conversion is the technique of transforming speech 
spoken by a source speaker to speech that is perceptually 
similar to a target speaker [1], [2].  There are several 
applications of voice conversion (VC) including movie 
dubbing for accurate portrayals of the original actors in 
foreign translations, restoration of old audio tapes, custom 
text-to-speech systems, and foreign language learning.  
Research in the area has been largely based on the classic 
source-filter model of speech production [1], [3], which 
views speech as the output of a time-variant filter (a model 
of the vocal tract) excited by a source signal (that represents 
the glottal excitation). Many research efforts have found the 
vocal tract filter to be more closely related to the perceptual 
identification of speakers [4], [5]. Accordingly, most 
previous work in the area is related to different ways of 
transforming the vocal tract representation from source to 
target speaker [1], [3], [5]. However, the excitation signal 
also has provided useful information for identifying specific 
voices [5], [6], [7]. Therefore, it is expected that for 
achieving high quality voice conversion adequate processing 
of both elements from the speech production model would 
be necessary. 

This paper will show how a baseline VC system, which 
relies on transforming only the filter parameters from source 

to target speaker, can be improved by adding a new 
algorithm for estimating the corresponding excitation signal 
from the transformed vocal tract parameters [6].  During 
training, this estimation algorithm first classifies target 
excitations into several classes, finds the probability of 
transition between such classes in the training sequence and 
finally builds a relationship between the vocal tract 
parameters and each excitation class using gaussian mixture 
models (GMM).  The three resulting objects of the training 
phase (a codebook composed of representative excitations 
from each class, the matrix of probabilities of transition 
between classes, and the vocal tract parameter’s GMMs) are 
then used during estimation for creating the target 
excitations to use for synthesizing the converted speech. 

The rest of the paper is organized in the following way: 
Section 2 shows some related previous work; Section 3 
describes the baseline VC system used as reference; Section 
4 presents the estimation method proposed for enhancing the 
baseline VC system; Section 5 shows comparative results of 
objective and subjective tests on the baseline and augmented 
VC system; Section 6 contains conclusions and planned 
extensions to this work. 
 

2. PREVIOUS WORK 
 
Currently, most VC systems use some type of linear 
prediction (LP) representation for modeling vocal tract filter 
parameters [7], [8], [9].  Line spectral frequencies (LSF) are 
the most common choice, mainly because of the ability to 
capture the resonances of the vocal tract using fewer 
coefficients and with better interpolation properties than 
alternatives like cepstral coefficients [8].  Several techniques 
have been proposed for converting the vocal tract 
representation, as segmental codebooks [10] and artificial 
neural networks [11], but the most common one is to use a 
linear transformation based on a stochastic model (e.g. 
GMMs) [3].  
 With respect to the excitation signal, earlier work was 
focused on transforming source excitations to target ones 
using techniques similar to that used for the vocal tract [10].  
However, more recently the emphasis has shifted to trying to 
estimate the target excitation from its own vocal tract model 
features.  Non-probabilistic estimation methods based in 
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codebooks have been proposed [7] as well as probabilistic 
ones based in GMMs [3]. Such estimation algorithms have 
been found to obtain better conversion results [7], [9]. In 
this work a different algorithm was used for estimating the 
excitation as described in Section 4. 

 
3. BASELINE CONVERSION SYSTEM 

 
For this work, a baseline VC system was built.  It models the 
vocal tract filter by computing the LSF parameters for every 
pitch-synchronous input speech frame.  The system works in 
two main modes, training and transformation, which operate 
as described below. 

Training mode: 
1) LSF Extraction: Speech samples with the same 

phonetic content from both source and target speaker 
are analyzed using LP for obtaining its corresponding 
LSF parameters.  

2) Feature alignment: The LSF vectors obtained before 
are time-aligned using dynamic time warping (DTW) 
in order to compensate for any difference in duration 
between source and target utterances. 

3) Estimation of the transformation function: The aligned 
LSF vectors are then used to train a joint GMM whose 
parameters then build a stochastic transformation 
function.  Such a function basically computes the most 
likely target LSF vector given the input source LSF 
vector and the GMM as presented in [3]. 

Transformation mode: 
1) LSF Extraction: As in training mode, LSF vectors are 

computed from the input speech, but in this case only 
the source speaker's utterances are used. 

2) LSF Transformation: The GMM-based transformation 
function built during training is now used for 
converting every source LSF vector into its most likely 
target equivalent [9]. 

3) Synthesis: Transformed LSF vectors are used in 
conjunction with the source LP residual (obtained by 
inverse filtering) to synthesize the resulting converted 
speech. 

As stated in the last step, this system uses the unchanged 
source LP residuals as excitation for the synthesis filter.  As 
a result, the synthetic speech still has perceptible features 
from the source speaker [5]. 
 

4. RESIDUAL ESTIMATION 
 
A residual estimation stage was added to the baseline VC 
system described in the previous section.  It takes as input 
the converted LSF vectors and outputs an estimation of the 
corresponding target residuals.  Now the synthesis filter is 
excited by the estimated target residuals instead of the 
source ones.  The LSF transformation function is not 
modified.  Fig. 1 shows a simplified diagram of the final 
augmented VC system. 

 
Fig.1.  Simplified block diagram of the augmented VC system 

 
 For this residual estimation an algorithm first described 
in [6] was used.  As illustrated in Fig. 2, the training 
procedure consists of four main steps: 

1) Feature extraction: A pitch-synchronous LP analysis 
and inverse filtering is performed on training speech 
from the target speaker. The resulting features are 
paired vectors of LSF and LP residuals. 

2) Residual clustering: Training LP residuals are then 
classified using K-means clustering with Euclidean 
distance, and the final centroid for every class is 
stored. 

3) Estimation of transition probabilities: The training 
sequence of LP residuals is labeled using the classes 
from the K-means clustering. This sequence of labels 
is then used to compute the probability of transition 
between classes. 

4) GMM training: The sequence of labels from the 
previous step is also used on the corresponding 
sequence of LSF vectors. Each resulting set of LSF’s is 
then used for training a GMM, so at the end there will 
be a LSF’s GMM for every LP residual class. 

The resulting model can be seen as a hidden markov 
model (HMM) where the residual’s classes are the states and 
the LSF vectors the observations.  Then, the training 
procedure described above is equivalent to training a HMM 
with a known sequence of states (labeled sequence of LP 
residuals from clustering) and using GMMs as the 
probability distribution of observations within each state. 

 
Fig.2. Outline of the training phase for the LP residual estimation 

algorithm. 
 

The estimation phase is outlined in Fig. 3, where new 
LP residuals are computed as a linear combination of the 
residual centroids (Cresn) obtained during training.  The 
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weights (wn,i) for the combination are recomputed every 
frame using an input LSF vector (li, from the LSF 
conversion stage) and probabilistic information stored in the 
GMMs (p(li|Θn)) and the matrix of transition probabilities 
(an,i). 

 
Fig.3. Outline of the estimation phase for the LP residual 

estimation algorithm. 
 

5. RESULTS AND DISCUSSION  
 
A comparative evaluation of the baseline VC system versus 
the augmented system was conducted to compare overall 
performance.  Two different conversion scenarios were 
tested: male-to-male and female-to-female, using data from 
the VOICES [3] database.  For each speaker, the available 
recordings were randomly divided in two non-overlapping 
sets: a training corpus with 35 sentences, and a testing 
corpus with 15 sentences.  In all cases, two pitch period long 
frames with overlapping were used for pitch-synchronous 
speech analysis and synthesis.  As the LP residual for 
unvoiced speech sections has been found to be of little 
relevance for perceptual speaker identification [3], [5], the 
augmented system only used LP residual estimation for 
voiced frames. For unvoiced sections the source residual 
was used. 

First, an objective comparison was done using a spectral 
distance measure defined as [7] 
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Where Sorg(p,wk) and Scon(p,wk) are respectively the 
short time Fourier transform of the p-th original and 
converted voiced frames; D is the number of DFT points 
(1024 in this case) and L is the number of frames. Fig. 4 
summarizes the results obtained for this objective measure.  
Different numbers of residual’s clusters (i.e. number of 
states in the HMM analogy. N = 16, 20, 24), as well as 
several numbers of gaussian mixtures for the LSF 
conversion (i.e. number of mixtures per state. M = 4, 8, 12, 
16, 20, 24) were tested.  The original source to target 
spectral distance is also included as a reference. 

The augmented system always gave smaller distances 
than the baseline system.  Moreover, according to Fig. 4 
using a higher number of residual’s clusters did not 
necessarily imply a reduction on spectral distance.  More 
testing will be needed for determining the optimal number of 

clusters to use, so the augmented systems performs 
consistently well with respect to spectral distance in 
different conversion scenarios. 

Objective measures were complemented with two 
different subjective tests. Eight untrained, normal hearing 
listeners participated in listening tests. For generating the 
converted speech each VC system was configured with the 
number of gaussian mixtures (M) and residual’s clusters (N) 
that gave the smaller spectral distance on the objective 
measures. The first listening test was a mean opinion score 
(MOS) for contrasting the perceived quality of synthesized 
speech from both VC systems. Eight sentences from the 
testing set were selected, and the listeners were presented 
with three different versions of each one in random order: 
one original target recording, one converted by the baseline 
system and one converted by the augmented system.  
Listeners were asked to assess the quality of every sentence 
using a numeric scale from 1 (very poor) to 5 (excellent).  
All evaluations were averaged together and Table 1 presents 
the consolidated results. 

 

 
a) Male to male conversion 

 
b) Female to female conversion 

Fig.4. Comparison of spectral distance results for different 
configurations of the baseline and augmented VC systems. 

 
The second subjective test was an extended ABX 

designed to judge if the converted speech was perceived as 
the target voice or not.  Listeners again were presented with 
three different versions of 8 testing sentences: original 
source and target recordings (A and B in random order), and 
converted speech (X).  Then, they were asked to decide to 
which voice (A or B) X was closer to according to the 
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following numeric scale (for the purposes of the numbers 
presented here, A is the source speaker and B the target, 
during the actual test this order was randomly changed but 
the software kept track of the assignment so the final 
numeric result was consistent with this assumption): 

1. X sounds like A for sure 
2. X sounds closer to A but I’m not quite sure is the same 

person 
3. X sounds like neither A nor B 
4. X sounds closer to B but I’m not quite sure is the same 

person 
5. X sounds like B for sure 

In other words, scores closer to 5 indicated better 
quality of conversion.  Baseline and augmented systems 
were tested independently for both male-to-male and female-
to-female conversions, the final averaged results are shown 
in Table 2. 

 
Table 1. MOS results. 

Speech source 
Averaged 

MOS 
Confidence 

interval (99%) 
Original target recordings 4.84 [4.68, 5.00] 

Baseline VC system 3.97 [3.54, 4.40] 
Augmented VC system 3.72 [3.39, 4.05] 

   
Table 2. ABX test results. 

Type of 
conversion 

VC System 
tested 

Avg. 
ABX 
result 

Confidence 
interval 
(99%) 

Baseline 3.89 [3.57, 4.21] 
Male-to-male 

Augmented 4.34 [3.94, 4.74] 
Baseline 3.48 [3.02, 3.94] 

Female-to-female 
Augmented 4.05 [3.69, 4.41] 

 
 By contrasting MOS and ABX results, the inclusion of 
the residual estimation stage in the augmented VC system 
resulted in converted speech that is significantly closer 
perceptually to the target voice than the speech synthesized 
from the baseline system; but at the same time it introduced 
a higher distortion that lowered the MOS results. We believe 
the main reasons for this behavior are: 

• The residual estimation strategy contributed useful 
information for the perceptual identification of the 
speakers. 

• The signal representation used for the residuals 
resulted in phase discontinuities in the synthesized 
speech (while not present in the baseline system 
because of the use of natural residuals) that are 
perceived as a larger amount of artifacts during the 
MOS tests. 

 
6. CONCLUSION 

 
This paper presented how a VC system based only on the 
conversion of vocal tract features (LSF vectors) can be 
enhanced by adding a new algorithm that estimates the 

excitation signal of the target speaker.  The estimated 
excitation signal was obtained through an HMM-like 
training model, involving target LP residual clustering, 
GMMs and transition probabilities.  Objective tests 
measuring spectral distortion, and subjective tests involving 
perceived synthesis quality and identity conversion, were 
conducted on same gender conversion scenarios.  The 
augmented system showed a significantly better performance 
than the baseline system in making the converted speech to 
sound closer to the target speaker.  However, at the same 
time the residual estimation strategy slightly decreased the 
quality of converted speech.  Future directions of this work 
will be focused on alternative ways of representing the LP 
residual to enhance the quality of the synthetic speech. 
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