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ABSTRACT

To make voice conversion usable in practical applications, the num-
ber of training sentences should be minimized. With traditional
Gaussian mixture model (GMM) based techniques small training
sets lead to over-fitting and estimation problems. We propose a new
approach for mapping line spectral frequencies (LSFs) representing
the vocal tract. The idea is based on inherent intra-frame correla-
tions of LSFs. For each target LSF, a separate GMM is used and
only the source and target LSF elements best correlating with the
current LSF are used in training. The proposed method is evaluated
both objectively and in listening tests, and it is shown that the method
outperforms the conventional GMM approach especially with very
small training sets.

Index Terms— voice conversion, line spectral frequencies

1. INTRODUCTION

Voice conversion (VC) is a relatively new field of speech signal pro-
cessing. It aims at modifying speech spoken by one speaker (source)
to give an impression that it was spoken by another specific speaker
(target). The voice conversion process consists of two phases: train-
ing and conversion.

In training, a mapping from source features to target features is
created based on training data from both speakers. In the conversion
phase, any unknown utterance from the source speaker can be con-
verted to sound like the target speaker. The most popular methods
for creating the mapping in voice conversion include codebooks [1],
[2], and Gaussian mixture models (GMMs) [3], [4]. Recently, voice
conversion in the framework of hidden Markov model based speech
synthesis has also become a popular topic (e.g. [5]).

GMMs have been found to offer reasonably good performance
in voice conversion. On the other hand, the main drawbacks are
over-smoothing and over-fitting. In [6], the over-fitting properties
of different GMM based approaches were compared with different
amounts of training data. It was concluded that the number of mix-
tures must be decreased when the amount of training data decreases.

Speaker identity can be partially characterized using formant po-
sitions and bandwidths. The estimation of formants is, however,
difficult. The most common features used in voice conversion are
based on direct use of spectral bands or on the source-filter theory.
Examples of such features include MFCCs (Mel frequency cepstral
coefficients) [3] and LSFs (line spectral frequencies) [4].

The most potential application areas of VC are related to enter-
tainment. One of these applications is text-to-speech (TTS) voice
customization. Usually new TTS voices are created using hours of
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recorded speech but voice conversion offers a way to generate new
voices with much shorter recordings, typically in the order of 50-
200 sentences. Nonetheless, it is still burdensome for the user; it
is quite likely that a typical user is not willing to record even 50
predefined sentences for enabling his/her voice to be used as a TTS
voice. A reasonable number of sentences would probably be in the
order of 1-5 sentences but the current VC techniques cannot cope
effectively with such training set sizes. One recently proposed idea
for this problem is the use of eigenvoices [7], however, many-to-one
conversion requires multiple pre-stored source speakers.

In this paper, we propose an approach for LSF conversion for
the case where only a few training sentences are available. The ap-
proach is based on the joint density of the target and the source fea-
tures, following the idea of [4]. However, the properties of LSFs are
taken into account and the models are built for each target LSF sepa-
rately based on the correlation coefficients of the joint source-target
LSF vectors. This may reduce the model size and makes the GMM
training more reliable when only small training sets are available.

This paper is organized as follows. LSFs and their properties
as voice conversion features are considered in Section 2. In Sec-
tion 3, we describe the proposed method of using a separate GMM
for each LSF. Section 4 summarizes objective and listening test re-
sults when comparing the proposed approach against the conven-
tional full-vector GMM approach. Some interesting findings are dis-
cussed in Section 5, while Section 6 concludes the paper.

2. LINE SPECTRAL FREQUENCIES IN VOICE
CONVERSION

Line spectral frequencies have been widely used in many areas of
speech processing and they have been particularly popular in speech
coding. LSFs offer an alternative and fully reversible representa-
tion for linear prediction coefficients (LPCs). The conversion to line
spectral frequencies is carried out by first forming the polynomials
P (z) = A(z)+z−(m+1) andQ(z) = A(z)−z−(m+1) from the lin-
ear prediction analysis filter A(z) of order m. The LSF representa-
tion is then formed simply by the angular positions {ωk} of the com-
plex roots in ascending order. The LSF representation offers many
advantageous properties, for example in interpolation and quantiza-
tion. Another significant benefit is that the use of LSFs guarantees
filter stability. LSFs have also been used in many voice conversion
systems, for example in [2] and [4]. One reason for the popularity
in voice conversion is the close relationship to the modeling of the
vocal tract and formants. Despite the highly beneficial properties,
the use of LSFs as features in voice conversion also introduces some
problems. For example, the kth LSF coefficient may not always cor-
respond to the same formant. Moreover, due to the ordering prop-
erty, there are significant correlations between the LSF elements in a
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Table 1. The correlation coefficients for joint source-target LSF vectors.
Source LSFs Target LSFs

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
1 1.00 0.64 0.28 0.23 -0.13 0.04 0.00 -0.00 0.17 -0.21 0.54 0.59 0.29 0.07 -0.09 -0.21 -0.26 -0.10 -0.07 0.01
2 0.64 1.00 0.79 0.46 0.05 0.24 0.19 0.24 0.28 -0.01 0.39 0.80 0.75 0.55 0.21 0.05 0.02 0.17 0.23 0.17
3 0.28 0.79 1.00 0.58 0.18 0.37 0.26 0.40 0.26 0.17 0.21 0.66 0.84 0.82 0.44 0.27 0.31 0.34 0.44 0.34
4 0.23 0.46 0.58 1.00 0.63 0.49 0.32 0.33 0.40 0.13 0.18 0.42 0.44 0.45 0.63 0.55 0.36 0.26 0.23 0.11
5 -0.13 0.05 0.18 0.63 1.00 0.63 0.40 0.32 0.28 0.30 -0.05 0.03 0.10 0.17 0.59 0.84 0.63 0.37 0.24 -0.08
6 0.04 0.24 0.37 0.49 0.63 1.00 0.60 0.59 0.43 0.24 0.03 0.21 0.26 0.32 0.38 0.53 0.61 0.54 0.42 0.15
7 0.00 0.19 0.26 0.32 0.40 0.60 1.00 0.66 0.55 0.43 0.01 0.13 0.21 0.19 0.27 0.37 0.41 0.71 0.50 -0.10
8 -0.00 0.24 0.40 0.33 0.32 0.59 0.66 1.00 0.55 0.43 0.01 0.22 0.32 0.37 0.27 0.31 0.44 0.52 0.53 0.19
9 0.17 0.28 0.26 0.40 0.28 0.43 0.55 0.55 1.00 0.49 0.12 0.28 0.24 0.20 0.25 0.23 0.21 0.32 0.25 0.06
10 -0.21 -0.01 0.17 0.13 0.30 0.24 0.43 0.43 0.49 1.00 -0.13 -0.01 0.13 0.23 0.33 0.37 0.37 0.42 0.30 0.01
1 0.54 0.39 0.21 0.18 -0.05 0.03 0.01 0.01 0.12 -0.13 1.00 0.60 0.25 0.14 0.02 -0.12 -0.17 -0.07 -0.07 0.01
2 0.59 0.80 0.66 0.42 0.03 0.21 0.13 0.22 0.28 -0.01 0.60 1.00 0.75 0.54 0.22 0.02 -0.03 0.09 0.16 0.18
3 0.29 0.75 0.84 0.44 0.10 0.26 0.21 0.32 0.24 0.13 0.25 0.75 1.00 0.82 0.37 0.21 0.19 0.28 0.39 0.26
4 0.07 0.55 0.82 0.45 0.17 0.32 0.19 0.37 0.20 0.23 0.14 0.54 0.82 1.00 0.56 0.35 0.44 0.37 0.47 0.39
5 -0.09 0.21 0.44 0.63 0.59 0.38 0.27 0.27 0.25 0.33 0.02 0.22 0.37 0.56 1.00 0.77 0.56 0.37 0.27 0.13
6 -0.21 0.05 0.27 0.55 0.84 0.53 0.37 0.31 0.23 0.37 -0.12 0.02 0.21 0.35 0.77 1.00 0.76 0.47 0.34 -0.03
7 -0.26 0.02 0.31 0.36 0.63 0.61 0.41 0.44 0.21 0.37 -0.17 -0.03 0.19 0.44 0.56 0.76 1.00 0.66 0.51 0.22
8 -0.10 0.17 0.34 0.26 0.37 0.54 0.71 0.52 0.32 0.42 -0.07 0.09 0.28 0.37 0.37 0.47 0.66 1.00 0.70 0.04
9 -0.07 0.23 0.44 0.23 0.24 0.42 0.50 0.53 0.25 0.30 -0.07 0.16 0.39 0.47 0.27 0.34 0.51 0.70 1.00 0.31
10 0.01 0.17 0.34 0.11 -0.08 0.15 -0.10 0.19 0.06 0.01 0.01 0.18 0.26 0.39 0.13 -0.03 0.22 0.04 0.31 1.00

frame. This leads to the fact that diagonal covariance matrices do not
work well in GMM based conversion. Regardless of these problems,
LSFs can be considered good features for voice conversion.

Despite the fact that there are strong correlations between dif-
ferent LSFs, all the elements of the vectors are not correlated as can
be seen from the correlation coefficient matrix of Table 1 calculated
from CMU Arctic database [8] speakers bdl and slt. The correlation
coefficients were calculated from joint source-target LSF vectors ob-
tained using dynamic time warping (DTW) based alignment. The
LSFs for the source and target were derived from 10th order LPCs
estimated at 10-ms intervals using a 25-ms Hamming window and
the autocorrelation method. The first ten rows and columns corre-
spond to the intra-frame correlations in the source side whereas the
last ten rows and columns correspond to the correlations in the tar-
get side. It is easy to see that, for example, the first and the tenth
LSFs do not have a meaningful relationship in terms of correlation.
In speech coding, this has given justification for the use of split vec-
tor quantization where the LSF vector is split into two or more parts
that are quantized separately (e.g. [9]). The same idea is used in this
paper but the motivation is coming from a different angle.

An interesting property resulting from the use of split LSF vec-
tors is that less data is needed for occupying the LSF feature space
than with full LSF vectors. In [10], it was experimentally verified
that clearly more than 100 sentences are needed to cover the LSF
space of one speaker in perceptually transparent manner with full
LSF vectors. CMU Arctic database [8] with seven speakers and var-
ious sentence sets were used. We carried out a similar test with split
LSFs following the 3-3-4 splitting proposed in [9] and the compar-
ative results are shown in Table 2. According to the general criteria
of perceptual transparency proposed in [9], it can be seen that only
5 sentences is enough for covering the LSF space with split LSF
vectors if a few 4 dB outliers are forgiven (0.05%). In other words,
we can replace the split LSF vectors of any given test sentence with
split LSF vectors in the training set of approximately 5 sentences in
such a manner that the average spectral distortion (SD) is less than

Table 2. Spectral distortion using 5, 10, 20, 50, and 100 training
sentences without splitting (N) and with 3-3-4 splitting (S).

Trans- 5 10 20 50 100
parent

Mean <1.00 N 2.23 2.00 1.80 1.59 1.46
SD (dB) S 0.80 0.63 0.51 0.38 0.31
2 dB (%) <2.00 N 58.5 46.1 34.7 21.4 14.0
outliers S 1.57 0.47 0.15 0.03 0.01
4 dB (%) 0 N 2.63 0.95 0.38 0.10 0.04
outliers S 0.05 0.00 0 0 0

1.0 dB, there are (practically) no outliers having SD above 4 dB, and
less than 2% of frames have SD between 2 and 4 dB.

The above results suggest that it might be beneficial to use split
LSF vectors in voice conversion if the aim is to be able to cope with
small training sets. However, the design of the splitting scheme will
have to be a trade-off between efficient space occupation and proper
handling of correlations between the LSFs: the use of scalars would
offer the most efficient space occupation but it would neglect the
relationships between LSFs.

3. PROPOSED METHOD

Kain [4] proposed to combine the source vector x and the target
vector y as z = [xT yT ]T to estimate the GMM parameters (prior
probability αi, mean vector μi , and covariance matrix Σi) for each
mixture i = 1 . . . Q. In conversion, the mapped target ŷ is formed
from the source x as

ŷ =

QX
i=1

hi(x)[μy
i + Σyx

i Σxx−1
i (x− μ

x
i )] (1)
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Σi =

»
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i Σxy
i

Σyx
i Σyy

i

–
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»
μx

i

μ
y
i

–

and
hi(x) =

αiN (x; μx
i , Σxx

i )PQ

j=1 αjN (x; μx
j , Σxx

j )

Although Eq. 1 does not require that the dimension of the source
feature is equal to that of target’s, many voice conversion studies
model jointly full vectors having equal dimension. We refer to this
approach as full-vector GMM. Stylianou et al. [3] reported that using
diagonal covariance matrices instead of full covariance matrices did
not affect the results significantly. However, they were usingMFCCs
which do not exhibit strong correlation properties like LSFs. In ad-
dition, the kth MFCC coefficient of the source corresponds to the
kth MFCC coefficient of the target but there may not always be such
correspondence between the kth source LSF and the kth target LSF.
Consequently, we have considered necessary to use full covariance
matrices in LSF conversion.

In general, GMMs can model very complicated dependencies
between variables if we assume that the size of the training data and
the number of mixtures are not limited. Nevertheless, with a small
amount of data, the conversion result may be really bad due to over-
fitting and due to the fact that it may not be possible to get reliable
estimates for all the elements in the covariance matrix. Our idea
is to utilize the inherent intra-frame correlation properties of LSFs.
The first step in the process is to calculate the correlation coefficients
between all the elements of the joint source-target LSF vectors. In
the case of 10-dimensional LSFs, this results in a symmetric 20x20
matrix, as shown for one speaker pair in Table 1.

After computing the correlation coefficients based on the train-
ing data, it is checked for each target LSF which correlations are
meaningful, i.e. the absolute value is above some threshold, say 0.5.
For example for the fourth target LSF in Table 1 (corresponding to
14th element in the matrix), the most influential features would be
source LSFs 2 and 3 and target LSFs 2, 3, and 5. Similarly, for the
seventh target LSF we would choose source LSFs 5 and 6 and target
LSFs 5, 6 and 8. A separate GMM is then built for each LSF using
the feature elements having high correlation based on the source-
target correlation coefficients. For each LSF model, it is ensured that
at least one source LSF is included in the GMM estimation since the
conversion phase would be impossible otherwise. Note that for ex-
ample with the model of the first target LSF, the second target LSF
could also be predicted but this option is not currently used in the
conversion phase: for the second LSF, there is another GMM con-
structed based on its correlations.

The conversion is done using Eq. 1 that also holds for different
combinations of data elements. For example, the training data for
the fourth LSF would contain vectors of type z = [x2x3y2y3y4y5]

T .
In conversion, however, only the fourth LSF needs to be converted:
only the third value in the mean vectors of μ

y
i of the model and the

third row of matrix Σxy
i are needed in the conversion although the

target features y2, y3, y4 and y5 are also used in the GMM training.
It is clear the proposed method cannot model complicated de-

pendencies in the data but neither can the full-vector GMM when
there is only a small amount of training data available. It is also
known that the first LSFs are perceptually more important than the
last ones (like ninth and tenth) but they are still treated equally in
full-vector training. In the proposed approach, the different LSF el-
ements can be treated differently e.g. by adjusting the correlation
thresholds and the number of mixtures for the different GMMs. In
general, there should be a perceptual error for training the LSF map-
ping function.

4. EVALUATION

For evaluation, we used a freely available CMU Arctic database [8]
Mappings were trained for two pairs: slt-bdl (female to male) and
bdl-slt (male to female). In analysis and synthesis, we used a voice
conversion framework similar to the one presented in [11]. All the
tests focused only on the differences in LSF conversion, and the con-
version of all other parameters (voicing information and harmonic
amplitudes for the residual spectrum, pitch and energy) were han-
dled in an identical way in all tests. Only pitch level adjustment and
residual spectrum resampling was carried out.

In the training phase, parallel utterances from the source and
the target speakers were aligned using standard DTW based tech-
niques. Silent frames and frame pairs with highly different levels of
voicing were discarded. Moreover, one source frame was allowed
to correspond to only one target frame in such a way that repeated
source frames were combined by averaging their corresponding tar-
get LSFs. The GMMs, for both the proposed approach and the con-
ventional approach, were trained using the EM algorithm with rela-
tive convergence rate threshold of 1e−6.

4.1. Objective results

While we acknowledge that objective measures are not always very
reliable in voice conversion research, we did some objective mea-
surements to get some numerical evidence on the usefulness of the
proposed idea. As the study involved the conversion of the LSFs,
all the measurements were based on LSFs. Because the use of root
mean squared error of LSF vectors can be misleading, we used nor-
malized cepstral distance (NCD) [6] and spectral distortion (SD) in-
stead. NCD was calculated for 13th order MFCCs exluding the first
MFCC as follows:

e(ĉt
, c

t) =

PN

i=1

P13
j=2(ĉ

t
ij − ct

ij)
2

PN

i=1

P13
j=2(c

s
ij − ct

ij)
2

(2)

where ĉt is the predicted target, ct is the real target vector, cs is
the source vector and N is the number of samples. We calculated
the MFCCs from the LP spectrum based on the source, target and
converted LSFs. SD was calculated for the band from 125 Hz to
3100 Hz.

As learnt from [6], the number of mixtures should be low when
there is not much training data available and thus the full-vector
GMM only had 4 and 8 mixtures whereas the split vector GMM
had 2, 4, and 8 mixtures. The NCD and SD values given in Table
3 were computed using 50-sentence testing data sets not included in
the training. The training data sets consisted of 2, 3, 5, 10 or 20
sentences and the results were averaged from 20 trials.

4.2. Listening test results

A preference test measuring the LSF conversion performance using
training sets of only two parallel sentences was carried out. In the
test, a full-vector GMM with 4 mixtures was compared against a
split vector GMM with 2 mixtures. As discussed in the beginning
of the section, the comparison only involved LSF conversion and all
the other parameters were processed in identical way.

11 listeners participated in the test and and they were asked to
give preference ratings for speech samples from the viewpoint of
speech quality and speaker identity (which sample sounded more
like the speaker in the reference target samples). The listeners could
also answer ”equal”. The listening test included the same speaker
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Table 3. Normalized cepstral distances (left of |) and mean spectral
distortion in dB (right of |, in dB) for the training sets of 2, 5, 10 and
20 sentences, computed using the conventional method with 4 and 8
mixtures (c-4 and c-8), and the proposed approach with 2, 4, and 8
mixtures (sp-2, sp-4, sp-8).

slt-bdl 2 5 10 20
c-4 0.65 | 5.1 0.51 | 4.6 0.47 | 4.3 0.44 | 4.2
c-8 0.80 | 5.5 0.55 | 4.7 0.48 | 4.4 0.44 | 4.2
sp-2 0.54 | 4.7 0.50 | 4.5 0.48 | 4.4 0.48 | 4.5
sp-4 0.55 | 4.8 0.49 | 4.5 0.47 | 4.4 0.47 | 4.4
sp-8 0.58 | 4.9 0.50 | 4.6 0.47 | 4.4 0.46 | 4.4
bdl-slt 2 5 10 20
c-4 0.55 | 4.7 0.42 | 4.2 0.39 | 3.9 0.37 | 3.8
c-8 0.75 | 5.2 0.46 | 4.3 0.40 | 4.0 0.37 | 3.8
sp-2 0.47 | 4.4 0.43 | 4.2 0.42 | 4.1 0.40 | 4.1
sp-4 0.47 | 4.5 0.42 | 4.2 0.41 | 4.1 0.41 | 4.1
sp-8 0.49 | 4.6 0.42 | 4.2 0.41 | 4.1 0.41 | 4.0

Table 4. Preference percentages for quality from a listening test.
Quality Conventional Proposed Equal
slt-bdl 1.7% 78.4% 19.9%
bdl-slt 10.8% 69.9% 19.3%

pairs, slt-bdl and bdl-slt, as the objective tests. For both pairs, four
different random two-sentence training sets were used for training
the GMMs. The resulting GMMs were used to convert 4 different
randomly-selected sentences, resulting in 32 pairs to evaluate. In
total, the number of answers in the listening test was 352 for both
quality and identity.

The results for the quality preference are shown in Table 4 and
the closeness to the target identity in Table 5. The quality was found
clearly better with the proposed method. As we expected, the iden-
tity related results show less difference since both methods are based
on the use of GMMs that has restricted identity conversion capabilies
due to the over-smoothing phenomenon.

5. DISCUSSION

As shown in Section 4, the proposed approach offers clear perfor-
mance advantages when the amount of training data is very limited.
This is not the only benefit. The method is also very flexible and it al-
lows making reductions in the memory requirements and in the com-
putational complexity. The model size can be adjusted by changing
the correlation threshold or the number of mixtures in the GMMs.
Moreover, different LSFs can be treated differently based on their
perceptual relevance: for example, bigger models and/or more mix-
tures can be used for the more important first LSFs while smaller
models can be used for the less important last LSFs. Considering the
results in Table 3, is is likely that the most optimal split vector case

Table 5. Preference percentages for identity from a listening test.
Identity Conventional Proposed Equal
slt-bdl 4.6% 38.6% 56.8%
bdl-slt 11.9% 31.8% 56.3%

was not included. Probably for the best result, different LSFs should
have been modeled with different amount of mixtures. In addition,
the correlation threshold can be different for different LSFs and it is
also possible to model less important elements (e.g. the ninth and
the tenth LSF) jointly. It should also be noted that lower mixture
numbers can be used with the proposed approach than with the con-
ventional full-vector GMMs because the dimension is smaller.

Even though the objective measurements suggest that the per-
formance advantage of the proposed approach is lost with increasing
training set size, it has been verified that perceptually the perfor-
mance is still very close to that of the convetional full-vector GMM
even with large training sets in the order of 100 sentences.

6. CONCLUSIONS

We have presented a novel approach for LSF conversion that can
cope with sparse training data. The proposed approach takes into
account the inherent intra-frame correlation properties of LSFs. The
objective measurements and the listening test results show the use-
fulness of the proposed approach, and demonstrate the benefits over
the conventional joint density estimation based on full LSF vectors.
The proposed method is especially useful if only a very small amount
of training data is availble.

7. REFERENCES

[1] M. Abe, S. Nakamura, K.Shikano, and H. Kuwabara, “Voice
conversion through vector quantization,” in ICASSP, 1988, pp.
565–568.

[2] O. Turk and L.M. Arslan, “Robust processing techniques
for voice conversion,” Computer Speech and Language, vol.
4(20), pp. 441–467, October 2006.

[3] Y. Stylianou, O. Cappe, and E. Moulines, “Continuous proba-
bilistic transform for voice conversion,” IEEE Trans. on Speech
and Audio Processing, vol. 6(2), pp. 131–142, March 1998.

[4] A. Kain and M.W. Macon, “Spectral voice conversion for text-
to-speech synthesis,” in ICASSP, 1998, vol. 1, pp. 285–288.

[5] J. Yamagishi, K. Ogata, Y. Nakano, J. Isogai, and T. Kobayashi,
“HSMM-based model adaptation algorithms for average-
voice-based speech synthesis,” in ICASSP, 2006, vol. I, pp.
77–80.

[6] L. Mesbahi, V. Barreaud, and O. Boeffard, “GMM-based
speech transformation systems under data reduction,” in 6th
ISCA Speech Synthesis Workshop (SSW6), 2007, pp. 119–124.

[7] T. Toda, Y. Ohtani, and K. Shikano, “One-to-many and many-
to-one voice conversion based on eigenvoices,” in ICASSP,
2007, vol. 4, pp. 1249–1252.

[8] J. Kominek and A.W. Black, “CMU Arctic databases for
speech synthesis,” Tech. Rep., Carnegie Mellon University,
2003.

[9] K. Paliwal and B. Atal, “Efficient vector quantization of LPC
parameters at 24 bits/frame,” IEEE Trans. on Speech and Audio
Processing, vol. 1(1), pp. 3–14, January 1993.

[10] E. Helander, J. Nurminen, and M. Gabbouj, “Analysis of LSF
frame selection for voice conversion,” in International confer-
ence on Speech and Computer, 2007, pp. 651–656.

[11] J. Nurminen, V. Popa, J. Tian, Y. Tang, and I. Kiss, “A para-
metric approach for voice conversion,” in TC-STAR Workshop
on Speech-to-Speech Translation, 2006, pp. 225–229.

4672


