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ABSTRACT 
 
In current voice conversion systems, obtaining a high 
similarity between converted and target voices requires a 
high degree of signal manipulation, which implies important 
quality degradation, up to the point that in some cases the 
quality scores are unacceptable for real-life applications. 
Indeed, a tradeoff can be observed between the similarity 
scores and the quality scores achieved by a given voice 
conversion system. In our previous works we proved that 
statistical methods and frequency warping transformations 
could be combined to yield a better similarity-quality 
balance than conventional systems, due to significant 
quality improvements. In this paper, two different ways of 
combining these two approaches are compared through 
perceptual tests in order to determine the best strategy for 
high-quality voice conversion. The comparison is made 
under the same training conditions, using the same speech 
model and vector dimensions. The results indicate that the 
Weighted Frequency Warping method is preferred by 
listeners. 
 

Index Terms— voice conversion, speech synthesis, 
gaussian mixture model, weighted frequency warping 
 

1. INTRODUCTION 
 

The goal of voice conversion systems is to modify the 
voice of a source speaker for it to be perceived as if it had 
been uttered by another specific speaker, called target 
speaker. For this purpose, relevant characteristics of the 
source speaker have to be identified and replaced by those 
of the target speaker without losing any information or 
modifying the message. As modifying linguistic features is 
a very complicated task, most of the existing voice 
conversion systems focus on the acoustic features of speech. 
In the area of speech synthesis, voice conversion techniques 
have important applications. Text-to-speech synthesis (TTS) 
systems usually generate their output by selecting and 
concatenating speech units taken from a database, which has 
been previously built by recording the voice of a 
professional speaker. Voice conversion technology can be 
incorporated into TTS systems to transform the recorded 

voice into any other target voice, so that it would not be 
necessary to record an entire database for each output voice. 

Several voice conversion techniques have been 
developed since the problem was first formulated in 1988. 
Abe et al. proposed to convert voices through mapping 
codebooks created from a parallel training corpus [1]. 
Arslan tried to avoid the spectral discontinuities caused by 
the hard partition of the acoustic space by means of a fuzzy 
classification [2]. Other techniques tried to represent the 
correspondence between the frequency axis of the source 
and target speakers by means of a warping function [3]. Due 
to the low degree of modification, the quality reached by 
such systems was high, but the conversion scores were not 
satisfactory because even if the formants were moved to the 
desired positions, their intensity could not be manipulated. 
The appearance of statistical methods based on gaussian 
mixture models (GMM) for spectral envelope 
transformation was an important breakthrough in voice 
conversion [4, 5], because the acoustic space of speakers 
was partitioned into overlapping classes and the weighted 
contribution of all the classes was considered when 
transforming acoustic vectors. The spectral envelopes were 
successfully converted without discontinuities, but in 
exchange the quality of the converted speech was degraded 
by over-smoothing. This problem was faced in further 
works [6, 7, 8], while the usage of GMM-based techniques 
became almost standard, up to the point that the research 
was focused on increasing the resolution of GMM-based 
systems through residual prediction [5, 9, 10] in order to 
improve both the quality scores and the converted-to-target 
similarity. Nevertheless, the problem of creating high-
quality voice conversion systems that could be used in real-
life applications has not been completely solved. At present, 
there is still a tradeoff between the similarity of converted 
voices to target voices and the quality achieved by the 
different conversion methods. 

In [11] we presented a new voice conversion technique 
called Weighted Frequency Warping (WFW), which 
combined the conversion capabilities of GMM-based 
systems and the quality of frequency-warping 
transformations. The aim of WFW was to obtain a better 
balance between similarity and quality scores than previous 
existing methods. At the same time, other authors tried to 
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improve conventional GMM-based systems by applying 
frequency-warping functions to residuals [12]. Both kinds 
of systems resulted in significant quality improvements and 
a slight decrement in the converted-to-target similarity 
scores, although they were conceptually different. This 
paper compares both approaches by means of a perceptual 
test, trying to determine the optimal one. For this purpose, 
both systems were implemented using a common speech 
model and trained under the same conditions with similar 
dimensioning parameters, so that the differences observed 
can be attributed directly to the methods. From now on, our 
particular implementation of the method combining GMMs 
and residual frequency warping is called GMM+RWFW for 
simplicity. 

This paper is structured as follows. In section 2, both of 
voice conversion techniques are explained in detail, 
emphasizing the differences. In section 3, the results of the 
subjective test are presented and discussed. Finally, the 
main conclusions are summarized in section 4. 
 

2. DESCRIPTION OF THE METHODS 
 
First, we observed that WFW and GMM+RWFW can be 
trained the same way. The training step of both methods 
consists of estimating a GMM and adequate frequency 
warping transformations, ideally from a parallel corpus. The 
differences lie in the way the trained transformation 
function is applied to the input utterances of the source 
speaker. In the next subsection, the common training 
procedure, which is similar to that presented in [11] for 
WFW, is described. After that, each transformation method 
is explained in detail. 
 
2.1. Training 
 
Assuming that a parallel (or parallelized) training corpus is 
available, the acoustic vectors of the source speaker, {xt}, 
and those of the target speaker, {yt}, are aligned in pairs. 
Then, a joint-density GMM is estimated from vectors {zt} 
by means of the EM algorithm, where zt is obtained by 
concatenating xt and yt. The resulting model is given by the 
weights { i}, the mean vectors {μi} and the covariance 
matrices {Ȉi} of its m gaussian components. Individual 
models for each speaker can be extracted from these 
parameters, since the mean vectors and covariance matrices 
can be decomposed into 
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Once the model is trained, it is possible to calculate the 
probability that a source vector x belongs to the ith acoustic 
class (each gaussian component represents one of the m 
overlapping acoustic classes): 
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where N(·) denotes a gaussian distribution. In conventional 
GMM-based methods, each gaussian component is assigned 
a statistical transformation function, so for a given input 
vector x to be converted, the m probabilities {pi(x)} are used 
as weights for combining the contribution of all the classes: 
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More information about GMMs can be found in [4, 5]. On 
the other hand, in [11] it was proved that high-quality 
transformations were obtained if optimal frequency warping 
functions {Wi(f)} were calculated for each class. Given an 
input vector x, the idea was to apply an individual envelope-
dependent frequency warping function for converting it, 
assuming that vectors belonging to the same acoustic class 
probably required similar warping trajectories: 
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The method proposed for estimating Wi(f) consisted of 
extracting the formants of the spectral envelopes given by 
μi

x and μi
y, and then searching the correspondence between 

them in order to establish a piecewise linear frequency 
warping function. In this paper, the same method has been 
used to estimate the optimal set of basis frequency warping 
functions. 
 
2.2. Conversion by WFW 
 
Given a new speech frame to be converted through WFW, 
1. The associated vector x is calculated by parameterizing 

the spectral envelope. 
2. The m weighting probabilities {pi(x)}, given by 

expression (2), are obtained. 
3. The individual frequency warping function for the 

current frame, W(x, f), is calculated by (4), using the 
trained basis functions. 

4. The magnitude envelope M(f) and the phase envelope 
(f) of the current frame are warped according to the 

predicted trajectory W(x, f): 

  fWffWMfM ,  ,  , 11 xx  (5a,b) 

Note that x is a low-dimensional parameterized 
representation of the magnitude envelope, which in 
general has interesting properties for modeling and 
transformation, but high-resolution envelopes are 
required in this step. 

5. Finally, the energy distribution of the warped magnitude 
envelope is corrected by bandwise amplification using 
the statistically converted envelope F(x) given by 
expression (3). This is very important for a successful 
conversion, because it is well known that good 
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converted-to-target similarity scores cannot be obtained 
through frequency warping transformations only. The 
energy correction has to be smooth in order to avoid 
degrading the quality of the signal. If a very accurate 
correction was to be applied, the envelopes would be 
forced to be similar to F(x), so the same performance 
than typical GMM-based systems would be obtained at 
the end. 

 
2.3. Conversion by GMM+RWFW 
 
In this case, the spectral envelopes are converted through 
statistical methods, like in conventional GMM-based 
systems, but a special treatment is given to residuals. In this 
context, the word residual denotes the spectral components 
of the signal that are not captured by the envelope 
parameterization. Some of these components are due only to 
codification inaccuracies, and some others are caused by 
actual high-resolution spectral peaks or valleys that low-
order parameterizations are unable to model. This means 
that moving in frequency this kind of components does not 
have full physical meaning, but it helps to increase the 
quality and the perceptual distance between the source 
speaker and the converted speaker [12]. The way of 
converting a given input frame is the following: 
1. Its associated vector x is calculated by parameterizing 

the spectral envelope. 
2. The m weighting probabilities {pi(x)}, given by 

expression (2), are obtained. 
3. The individual frequency warping function for the 

current frame, W(x, f), is calculated by (4). 
4. The spectral residual of the current frame is separated by 

inverse filtering, using the envelope given by x. Then, 
the warping function obtained in step 3 is applied to the 
residual: 

  fWffWMfM rrrr ,  ,  , 11 xx  (6a,b) 

5. The warped residual is passed through the filter given by 
the converted envelope F(x), calculated by (3). 

Although the algorithm was adapted to the training 
conditions of WFW, the underlying idea is the same that 
was proposed in [12]. 
 
2.4. Implementation 
 
Both systems were implemented using the same speech 
model. Due to its flexibility, the harmonic plus stochastic 
model proposed in [13] was used for analysis, envelope 
estimation and warping, prosodic modification and 
reconstruction of speech signals. The harmonic component 
is represented by f0, amplitudes and phases. The stochastic 
component is modelled by means of white noise passing 
through all-pole filters. The voice conversion algorithms are 
applied only to the harmonic component of speech, which is 
present in voiced segments. For this purpose, all-pole filters 

are fitted to the harmonic amplitudes and are parameterized 
using line spectral frequencies (LSF), from which GMMs 
are estimated. The amplitude and phase envelopes to be 
warped during the conversion step are also extracted from 
the harmonic parameters, so new harmonic parameters are 
obtained at the end of the warping process. On the other 
hand, the unvoiced frames are kept unmodified, whereas the 
stochastic component of the voiced frames is predicted from 
the converted harmonic component [11]. Concerning pitch 
processing, a simple linear transformation based on the log-
normal distribution of f0 has been applied to adapt the pitch 
range of the source speaker to that of the target speaker: 
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This simple approach gives good results when the prosody 
of the utterances used for testing is neutral and 
homogeneous. In this case, we used this type of recordings 
in order to focus the attention of the listeners on the spectral 
characteristics of the converted voices. 
 

3. EXPERIMENTS 
 

The audio database used for this experiment contained 
more than 150 sentences in Spanish, uttered by two male 
and two female speakers. The sampling frequency was 16 
KHz and the average duration of the sentences was 4 
seconds. 80% of these sentences were used for training the 
conversion functions. The recorded parallel sentences were 
aligned for each pair of speakers using HMM-based forced 
recognition. Concerning the dimensioning of the system, 8th 
order GMMs were estimated from 14th order LSF vectors. 
One male and one female speaker were chosen as source, 
and the other two speakers were used as target, so four 
different conversion directions were considered: male to 
male (m2m), female to female (f2f), male to female (m2f) 
and female to male (f2m). 10 sentences unseen during 
training were converted and resynthesized for all the 
combinations of methods and conversion directions, and 28 
volunteers were asked to listen to the converted-target 
sentence pairs in random order. For each pair of voices, 
listeners were asked to judge if they belonged to the same 
person using a 5-point scale, from 1 (completely different) 
to 5 (identical). The final conversion score was obtained by 
averaging all the individual scores. On the other hand, the 
listeners were also asked to rate the quality of the converted 
sentences from 1 point (bad) to 5 points (excellent). The 
resulting scores are shown in figure 1. 

The main differences are found in the quality scores. 
Although at first sight the naturalness of the utterances 
converted by GMM+RWFW is not far from that of WFW, 
the presence of small artifacts introduced by the first 
method seems to be annoying for the listeners. These 
artifacts can be due to the interaction between small 
resonances contained in the residual and the poles of the 
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converted LSF filters. This is probably the main 
disadvantage of GMM+RWFW: it is very difficult to avoid 
this kind of harmful interactions because the small spectral 
peaks of the residuals can be caused simply by codification 
inaccuracies, so their position is unpredictable. 

As we expected before carrying out the test, the 
conversion scores are slightly better for GMM+RWFW, but 
the differences found are less significant in this case. It is 
interesting to observe that, although WFW should in 
principle achieve worse similarity scores than 
GMM+RWFW due to the predominance of the frequency 
warping technique, the results show that in average there is 
no clear preference. 

From a global point of view, as the scores are consistent 
for all the conversion directions, it can be stated that WFW 
outperforms GMM+RWFW. Furthermore, the average 
quality level achieved by WFW is 3.64, which is acceptable 
for real voice conversion applications. 
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Figure 1: a) Similarity scores. b) Quality scores. 

 
4. CONCLUSIONS 

 
The performance of two different voice conversion 
techniques combining GMM-based statistical methods and 
frequency warping transformations has been rated by 
listeners. The results of the perceptual test indicate that a 
good balance between similarity and quality scores is 
obtained by both methods, but significant differences can be 
observed in the quality scores. The fact that both systems 
were implemented, trained and dimensioned in the same 
conditions allows us a more precise evaluation of each 
method. As the differences should be attributed only to the 
method itself, we can conclude that the Weighted Frequency 
Warping technique is more suitable for high-quality voice 
conversion. 
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