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ABSTRACT 
  
We propose a novel way to alleviate the data sparseness problem in 
training Letter-to-Sound (LTS) N-gram models by adding 
automatically generated new words to the training set. The 
proposed method consists of two procedures: (1) generating a large 
pool of new words automatically; (2) selecting good new word 
candidates from the new word pool via semi-supervised learning. 
The new words are created by replacing stressed syllables of an 
existing word with other stressed syllables under specified 
contextual constraints. The new word selection by semi-supervised 
learning is based upon consistent pronunciation predictions by 
different LTS models. After adding new words to the training set, 
the performance of LTS conversion is significantly improved. For 
the NetTalk dictionary, compared with the performance from the 
N-gram baseline model, 21.6% relative word error rate reduction is 
obtained. For the CMU dictionary, 9.1% and 5.6% relative word 
error rate reductions are obtained, respectively, with/without 
considering the stress. 
 

Index Terms— Letter-to-Sound, data sparseness, artificial 
data, semi-supervised learning 

1. INTRODUCTION 

In many speech applications, a reasonably large pronunciation 
lexicon is needed for specifying the spelling and corresponding 
pronunciations of commonly used words. However, no matter how 
large the lexicon is, there are always some out-of-vocabulary 
(OOV) words which are not covered. To predict the pronunciations 
of these OOV words, a good LTS module is desirable.  

Different methods have been investigated on LTS conversion. 
Both manually constructed rules and data-driven algorithms have 
been tried [1-9]. Manually constructed rules need expert 
knowledge of a linguist and they are hard to be extended from one 
language to the other. Data-driven techniques are the state-of-art 
methods, including: decision tree [2,3], hidden Markov model 
(HMM) [4], N-gram model [5-7], maximum entropy model [8], 
and transformation-based error-driven approach [9]. They can be 
automatically trained and language independent.  

In data-driven techniques, statistical inference between 
graphemes (spellings) and phonemes (pronunciations) can be made 
from the training data and thus trained model can be used to 
predict the pronunciations of unseen words. In training such a 

model, more data tends to train a model with better predicting 
capability as shown Fig. 1.  
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Fig 1. The LTS performances for different sizes of training set. 

(The results are from the CMU dictionary which will be 
introduced in Section 4.) 

 
Therefore, if a large word list with corresponding 

pronunciations is available, most of the LTS conversion rules of a 
language can be learned. However, in most situations, it is 
impossible to obtain such a word list. While it is relatively easier to 
extract a large word list with spellings, e.g., from the web, it is still 
a grand effort to get the correct corresponding pronunciations. 
According to our experience, it takes about 8 hours for an expert to 
guess the pronunciations of 1,000 words. 

In this paper, we propose two novel methods to generate new 
words with pronunciations. The first one is to generate new words 
from the available pronunciation dictionary, the other one is to 
generate data based upon semi-supervised learning [10-13] for a 
given list of word spellings. After the automatically generated 
words are used to augment the original training set, we hope to 
improve the performance of LTS model by alleviating the intrinsic 
data sparseness problem. 

The rest of the paper is organized as follows. In Section 2, the 
baseline of LTS conversion is introduced. In Section 3, the 
methods of generating new data are proposed in details. The 
experiments and analyses are shown in Section 4. Finally, 
conclusions are drawn in Section 5.  

2. BASELINE: CHUNK BASED N-GRAM FOR LTS 
CONVERSION 

N-gram statistical modeling techniques have been applied 
successfully to speech, language and other data of sequential 
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nature. In LTS conversion, N-gram has also shown its 
effectiveness in predicting word pronunciation from its letter 
spellings [5-7]. The relationship among grapheme-phoneme 
(Graphoneme) pairs is modeled as Eq. (1). 
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where L = {l1, l2,…, ln} is the grapheme sequence of a word W; S = 
{s1,s2,…,sn} is the phoneme sequence; and gi = <li,si> is a 
graphoneme; li and si are aligned as one letter corresponding to one 
or more phonemes (including null) by the dynamic programming 
algorithm described in [2,3]. 

Limited by the amount of training data, the N-gram model 
cannot be well trained if context becomes too large. However, 
many linguistic phenomena need a long-distance dependency 
modeling. To solve this problem, some stable (more frequently 
observed) spelling-pronunciation chunks are extracted as 
independent units and corresponding N-gram models are trained. 
For generating chunks, mutual information (MI) between any two 
chunks is calculated to decide whether two chunks should be 
joined together to form one chunk. This process is shown in Fig.2 
which is similar to the one used in [6]. 

 

Step 1: Initiate the chunk set with all of the graphonemes gotten 
after alignment;

Step 2: Calculate MI for all succeeding chunks in the training 
set; 

Step 3: Add the chunks with MI higher than a preset threshold 
into the chunk set as a new letter chunk;

Step 4: Stop if the number of chunks in the set is above a certain 
threshold or no more new chunk is identified; otherwise 
go to step 2.

 

Fig.2. A description of MI algorithm for chunk extracting 
 

In decoding, paths of all possible pronunciations that match 
the input word spellings are efficiently searched via the Viterbi 
algorithm and the pronunciation of the maximum likelihood path is 
retained as the final result. 

3. METHODS FOR GENERATING NEW WORDS 

3.1. Generating new words based upon replacing stressed 
syllables 

In statistical machine translation, paraphrases are generated as an 
efficient way to enlarge the data set to alleviate the data sparseness 
problem [14]. Similar to the paraphrase generation, we generate 
new words (artificial words) to train LTS statistical models.   

3.1.1. The new word generation process 

Given a pronunciation dictionary, the process to generate new 
words is as follows: 
a) If no syllable boundaries in a dictionary, mark them for all 

words at phoneme level based upon some syllabification 
rules. 

b) Align graphemes with phonemes by dynamic programming. 
Then transfer syllable boundary marks from marked 
phonemes to the correspondingly aligned graphemes.  

c) Make a list of primary stressed syllables from all words in the 
dictionary. 

d) Generate artificial data. All words in the dictionary are the 
seed words. For each seed word, extract the primary stressed 
syllable and compare it with the replacement candidates in 
the prepared list of stressed syllables. If the replacement rule 
(details in 3.1.2) is satisfied, replace the primary stressed 
syllable. A new word is thus generated with its 
corresponding pronunciation. After all seed words are 
processed, a new word list with pronunciations is generated. 

3.1.2. Replacement rules for generating new words 

To generate words that are more plausible both in letter spelling 
and phonemic structure, two replacement rules are adopted: 
(1) Replacement based upon similar phonemic structure.  
(2) Replacement based upon similar graphonemic structure.  

For a syllable, its structure is extracted based upon its 
phoneme sequence. All consonants are denoted by the symbol “C” 
in the structure. In the phonemic structure rule, vowels are 
represented in its original phonemic symbol; in the graphonemic 
structure rule, graphonemes of vowels (letter-phoneme symbol pair 
of the vowel) are used in the structure. All should conform with 
their positions in the original syllable. Fig. 3 shows an example of 
new words generation by the two replacement rules. 

r a f  r ae1 f

C ae1 C C a:ae1 C

Stress List Phonemic    
structure

Graphonemic 
structure

t a m  t ae1 m

C ae1 C

C a:ae1 C

m e k  m ae1 k C e:ae1 C

a t    ae1 t ae1 C a:ae1 C

C ae1 C

tam.ting  t ae1 m . t ih ng 
mek.ting  m ae1 k . t ih ng tam.ting  t ae1 m . t ih ng 

New words generated based upon 
similar Phonemic structure rule

New words generated based upon
similar Graphonemic structure rule

Phonemic 
structure

Graphonemic 
structure

Primary Stressed Syllable

Seed word (Aligned): r a f . t i n g  r ae1 f . t ih ng # 
Stressed syllable: r a f  r ae1 f

Fig.3. An example of new words generation by the two 
replacement rules 

 

Each rule can generate its own new word list with 
corresponding pronunciations. The graphonemic structure rule, 
along with its spelling conformation requirement, is more restricted 
than the phonemic structure rule. 

3.2. Generating new words based upon semi-supervised 
learning 

It is easy to extract new words from the Internet or other text 
databases, however, thus new words are usually without 
pronunciations. For LTS training, we like to generate correct or at 
least probabilistically correct pronunciations to enrich our training 
samples. 

Semi-supervised learning [10-13] can use unlabeled data to 
improve the model training efficiency. The basic idea is to 
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automatically annotate (label) the unlabeled samples using a 
classifier trained on a small labeled set. The model is then retrained 
or refined with additional auto-labeled data. 

Agreement learning is one type of semi-supervised learning 
which has been tested in automatic accent annotation [13]. It needs 
several classifiers to classify the unlabeled data separately. The 
labeling results which are in agreement among different classifiers 
are deemed as reliable and they will be used for retraining. In 
chunk N-gram based LTS training, we found that different chunks 
may have different capabilities to characterize the training set. For 
example, in the NetTalk dictionary, the decoded pronunciation 
paths from 3 different chunk N-grams (the number of chunks are 
500, 1,000 and 3,000, respectively) are quite different. Only 52.4% 
of the paths are the same. However, the word error rate of the 
agreed part is 16.6% which is much lower than the error rate 
(~35%) of any individual model. Therefore, selecting the results in 
agreement from different chunk models to enrich the training 
dataset is quite feasible for improving LTS performance. Although 
a large percentage of the results do not agree among multiple 
models, the new word list is large enough to generate ample good 
new word candidates for retraining the LTS model. The framework 
for predicting pronunciations of new words in semi-supervised 
learning is shown Fig. 4. 

Model 1 Model M…...

Agree Discard

Re-train LTS language models

M
odel U

pdate

Spelling List Original 
Pronunciation

 DictionaryDecoded by M language models

Yes No

 
Fig.4. Semi-supervised learning for predicting pronunciations of 

new words. 
 

In this framework, the words decoded by all models are added 
to the training set; and all LTS models are re-trained after new 
words are added; then updated models will perform a new iteration, 
until the agreement part is the same as the data gotten from the last 
iteration.  

4. EXPERIMENTS AND ANALYSES 

4.1. Data 

All of the experiments are carried out on two dictionary databases: 
NetTalk [15] and CMU dictionaries [16]. NetTalk is a dictionary 
with manually labeled alignments and syllable boundaries at both 
grapheme and phoneme levels. It consists of 20,008 words with 
corresponding pronunciations. The CMU dictionary contains about 
120,000 words without letter-phoneme alignments and syllable 
boundaries. To compare our results with other research works [6, 
8], we use 90% of the entries for training LTS conversion models, 
and the rest 10% for testing without considering stress marks in 
NetTalk. In addition, a word list (spelling only) extracted from 
Web text is used to generate new words by semi-supervised 
learning. It has about five-million word entries. 

4.2. Performances after generated words are added to the 
training set 

New words are generated by methods presented in previous 
sections and they are used to augment the original training set to 
re-train the LTS models. We use the abbreviations listed in Table 1 
to denote different methods. 

Table 1. Description of the abbreviations of different methods 
Abbreviation Description 

Baseline Graphoneme chunk based N-gram 
model (No extra data added) 

PS Artificial words generated with similar 
phonemic structure. 

GPS Artificial words generated with similar 
graphonemic structure. 

Semi Pronunciations generated by semi-
supervised learning 

Legitimate words Words extracted from Web text 
(spellings only, no pronunciations) 

 
The LTS performances of NetTalk and CMU databases are 

given in Tables 2 and 3. When artificially generated words with 
pronunciations are used in augmenting the training set, the LTS 
performance of NetTalk is significantly improved. Further, if a 
word list (legitimate words or spellings of artificial words) is 
labeled with predicted pronunciations by semi-supervised learning, 
it also brings some benefit for LTS models, especially for the CMU 
dictionary.  

Table 2. LTS performances of NetTalk 
Rule Number of Words WER (%) 

Baseline 18K 34.3 
PS +1,270K 27.4 
GPS +1,000K 26.9 
PS + Semi +173K 30.7 
GPS + Semi +148K 31.4 
Legitimate Words 
+ Semi

+1,463K 33.9 

 
Table 3. LTS performances of CMU (*use stressed vowels) 
Rule Number of 

Words 
WER (%) 

CMU* CMU 
Baseline 113K 34.0 26.7
PS +3,370K 42.3 36.0
GPS +2,440K 39.6 33.0
PS + Semi +866K 31.7 26.2
GPS + Semi +664K 31.7 26.0
Legitimate 
Words + 
Semi

+860K 30.9 25.2

Table 4. Relative error reductions in the two dictionaries with 
different word generations (%) (* use stressed vowels) 

 NetTalk CMU* CMU 
PS 20.1 No help No help 
GPS 21.6 No help No help 
PS + Semi 10.5 6.8 1.9 
GPS +Semi 8.5 6.8 2.6 
Legitimate Words 
+ Semi 

1.2 9.1 5.6 
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Table 4 lists the relative error reductions when new words are 
added to the training set. From this table, we can see that generated 
words are quite useful in training LTS models for both NetTalk 
and CMU dictionaries. 

4.3. Analysis and discussion 

Results show that the improvement of LTS performance is rather 
different across the two dictionaries. NetTalk is a compact and 
clean dictionary where the syllable boundaries are manually 
labeled by expert at both grapheme and phoneme level. Therefore, 
based upon the reliable syllable boundaries, the artificially 
generated new words are of good quality. On the other hand, CMU 
is a large, complex dictionary where the word entries are from 
inhomogeneous sources and no syllable boundaries are marked. 
Boundary errors induced by automatic alignment are therefore 
unavoidable. For this reason, not all artificially generated words 
can be trusted and used for training LTS. 

In addition, in evaluation of CMU, because stress is considered, 
for the new words generated by semi-supervised learning, only the 
words with one primary stressed syllable are kept which can filter a 
lot of noisy. Therefore, this is an important reason that the result of 
legitimate words for CMU from semi-supervised learning is better 
than it for NetTalk. 

To verify whether the generated new words are as useful as the 
manually labeled data, we did some experiments. First, two models 
with different sizes of training set are trained. One is gotten from 
half size of the original training set; the other is from the whole 
original training set. When comparing the performances of these 
two models, we found that although half size of training data is 
increased which needs a high cost work for manually labeling, just 
around 17% errors can be removed both for NetTalk and CMU. In 
addition, this labeling work will be harder and improvement will 
be smaller when the training set is larger. If adding our new words 
into training set, we can get about relative 9.1%-20% improvement. 
Therefore, automatically generating methods are efficient in LTS 
task. 

5. CONCLUSIONS 

Two approaches of generating new words are proposed, and they 
are both tested on the two dictionaries: NetTalk and CMU. The 
results show that if the dictionary is of a high quality with 
manually labeled syllable boundaries at the grapheme level, the 
new words generated based on replacing stressed syllables can 
result in significant LTS performance improvement. For example, 
in NetTalk, a 21.6% relative error reduction is obtained. Without 
syllable boundary information, only legitimate words and the 
spellings of artificially generated words can be used. After 
generating pronunciations by semi-supervised learning, both 
legitimate words and artificial word spellings can bring some 
benefit for model training. 

However, those generated new words may still be noisy, e.g., 
non-existing, atypical English words, or labeling errors from the 
semi-supervised learning. All these errors may affect the 
performance of LTS conversion. We did not investigate the issue 
of how to detect and prune those noisy words. But it is highly 
plausible that by purifying the training data, we will be able to 
further improve the LTS performance. 
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