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ABSTRACT 
 
In this paper, we propose to use discriminative training (DT) 
for improving Letter-to-Sound (LTS) conversion 
performance. LTS is a critical component in both ASR and 
TTS for predicting the correct pronunciation of a word not 
included in the lexicon. For TTS applications, predicting the 
proper pronunciation of an out-of-vocabulary person/place 
name, especially a name with foreign origin can be 
challenging. We utilize discriminative training, which has 
been successfully used in speech recognition, to sharpen the 
baseline N-grams of grapheme-phoneme pairs. We address 
the problem in a unified framework of discriminative 
training. Two criteria, Maximum Mutual Information (MMI) 
and Minimum Phoneme Error (MPE), are investigated. 
Experimental results show that DT yields a small (3.8-4.6% 
relative) but consistent error reduction across all databases 
tested. In addition, we observe that by pinpointing the local 
errors in a finer resolution, we can obtain a better 
discriminative model.  
 

Index Terms— Discriminative Training, Letter-to-
Sound, Graphoneme 

1. INTRODUCTION 

The letter-to-sound conversion, also known as grapheme-to-
phoneme or spelling-to-pronunciation conversion, is to 
predict the pronunciation of a given word strictly from its 
spellings. The LTS conversion is very important for 
handling out-of-vocabulary (OOV) words for both automatic 
speech recognition and TTS synthesis.  
Currently, speech or language researchers has put more 
intensive effort into large-scale tasks, such as training 
acoustic model with thousands-of-hours data [1] or training 
language model with 7-gram and millions of words [2]. 
Predicting the pronunciation of words that are not in the 
given dictionary is then critical. In many applications, OOV 
can be a serious problem when the LTS performance is not 

good. For example, in a directory assistance task, the name 
list in yellow pages, many words can be OOV.  
There are many reported research work in LTS [3-12]. Their 
algorithms can be roughly divided into non-metric methods 
(including rule based algorithm and decision tree based 
algorithm) and statistical methods. 
A good review of non-metric method can be found in [3-5]. 
We can separate the approaches to two categories. The first 
and the oldest one is to use manually written rules. These 
rules can be written by system developers or language 
experts. The second one is data-driven learning algorithms, 
such as Pronunciation by Analogy (PbA) [3], decision tree 
[6, 7], and Transformation Based Learning (TBL) [5]. These 
algorithms have been adopted in many applications. The 
footprint of the model is in general small and the LTS 
decoding is fast.  
Statistical methods use N-gram language models. Based on 
the way it is implemented, it can be divided into phoneme 
N-gram based algorithm [4, 8] and grapheme-phoneme pair 
(graphoneme) N-gram [8-12]. Although the statistical 
algorithms are relatively more complex and slower in 
decoding than the rule based ones, their performances tend 
to be better [5, 9]. In this paper, we also use graphoneme N-
grams as our baseline system.  
Discriminative training is widely used in speech recognition 
[13-18]. Algorithms like Minimum Classification Error 
(MCE) [13], MMI [14], MPE [15], and Minimum 
Divergence (MD) [16] are used to train acoustic model for 
better acoustic discriminations. In the language model part 
like N-gram, there are also some pioneering work. Chen et al 
use DT in Input Method Engine (IME) [17]. Guo et al use 
DT to improve the N-gram language model for speech 
recognition [18]. Recently, various criterions are viewed in a 
unified framework which is optimizing accuracy weighted 
posterior probability, and several optimization algorithms 
are proposed and proven effective in dealing with the 
framework [15, 16].  
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The success of discriminative training in language model 
motivates us to try it on improving N-gram based LTS 
module. We address this problem and come up with 
concrete algorithm to discriminatively train graphoneme 
base N-grams in the sense of minimum error training. We 
test these algorithms in different databases, starting with a 
well-tuned baseline system. Consistent improvements are 
obtained among the corpuses. The relative error reduction is 
from 3.8 to 4.6%. In addition, we observe the effect of 
localizing errors from word level to phone level for helpful 
guidelines in our future work. 
The structure of this paper is as following. In Section 2, we 
review our baseline system, or the grapheme-phoneme pair 
N-gram model. In Section 3, we present our discriminative 
training of graphoneme N-grams in detail. In Section 4, we 
introduce the experimental setups and evaluation results of 
our discriminative training. Finally, we present our 
conclusions in Section 5.  

2. GRAPHONEME N-GRAM MODEL 

In this section, the baseline LTS system built upon 
graphoneme N-gram model is introduced. The same N-gram 
model has been adopted by other researchers to obtain state 
of the art LTS performance [5, 9-12].  
Given a word w, we have a spelled letter sequence N

1L   and 

a phoneme sequence M
1Q  for the corresponding 

pronunciation. In it, N is the total number of letters and M is 
the total number of phonemes of the corresponding word.  
We need to train a statistical model, )|( 11

NMP LQ , to 
characterize the relation between letters and phonemes of a 
word. In most languages, the mapping between letters and 
phonemes is not strictly one-to-one. Instead, a many-to-
many mapping needs to be statistically established from data. 
Give an alignment, the word can be modeled by a grapheme-
phoneme (graphoneme) string E

1G . E is the total number of 
graphoneme. Given the alignment, G is determined by Q and 
vice versa.  
The probability of Q given L is shown in eq. (1). In it, the H 
is the space of all phone hypotheses for a given word W. 
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In decoding process, the criterion is to finding the phone 
sequence Q* that maximizes )|( LQP . It is equivalent to 
maximize P(G) as  (2). 
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         (2) 

An example of the word “phone” is shown as follows: 
Word:             phone 
Letter:             p h o n e 
Phoneme:        f  ow  n 

After the alignment, we get the graphoneme sequence, 
Graphoneme:   ph:f    o:ow    n:n    e:# 
where we use # to denote the NULL (phoneme).  
In the case of N-gram,  

E

e

Ne
ee

HH
gPP
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1
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      (3) 

Here 1
1
ne

eG  is the history of eg .We use θ  for the whole 
set of model parameters where each element corresponds to 
the statistical N-gram model of a graphoneme string, 1Ne

eG .  

2.1. Training 
We complete each graphoneme sequence for a word by 
adding the start <G> and end </G>. Based on these 
sequences, a graphoneme N-gram model is estimated with 
back-off smoothing and absolute discounting [19].  

2.2. Decoding 
The decoding is to find Q* that maximizes the likelihood in 
equation (3). In order to estimate this probability efficiently 
we use a Viterbi search algorithm.  

3. DISCRIMINATIVE TRAINING OF N-GRAM 

In this section, we apply the framework of minimum error 
training to the graphoneme N-gram models. 

3.1. Unified view of minimum error training 
Recently, various discriminative training criteria are 
formulated in a unified framework to minimize posterior 
weighted errors at different unit levels [15, 16].  

r H
rr

r

APfF
W

WWOWθ ),()|(            (4) 

where θ  denotes the set of all model parameters; r 
represents the index of training token; Or and Wr denote the 
corresponding observation and the reference, respectively; 
W is a hypothesis in the search space Hr . 
In the above equation, )|( rP OW  is the generalized 
posterior probability of hypothesis W given rO . ),( WWrA  
is an accuracy measure of a W given its reference Wr and f is 
a smoothing function. For pattern classification problems 
with an “elastic” scale, the design of accuracy term is not 
trivial. Actually, it can be defined globally at the sentence 
level or be localized to either word or phone levels. For 
example, configurations of several popular discriminative 
training criteria in speech recognition are listed in Table 1. 

Table 1. Comparison between minimum error training 
criteria. 

 f ),( WWrA  
MMI log )( rWW  
MCE 1 )( rWW  
MPE 1 ),(LEV rWWW  
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Here, LEV( , ) is the Levenshtein distance between two 
symbol strings;  is the number of symbols in a string. 
For training letter-to-sound language models, eq. (4) can be 
written as:  

r H
rr

r

APfF
Q

θ QQLQθ ),()|(          (5) 

According to eq. (1), it can also be rewritten as: 

r HH
r

rr

PAPfF
GG

GGGGθ )(),()(      (6) 

In practice, the N-Best decoded results can be used for 
representing the hypothesized search space H.  
To investigate the effect of error resolution, we compare 
MMI and MPE in our work. Correspondingly, the errors are 
defined at word and phone level, respectively.  

3.2. Optimization algorithm 
Given the objective function in (6), we optimize it with 
respect to the LTS model parameter set . Each element of 
it corresponds to the N-gram of a string, 1Ne

eG . In this 
work, we adopt the gradient descent approach, which adjusts 
the model in an iterative manner:  

F
tt 1                                     (7) 

1t  is the parameter of next iteration, t  is the parameter of 

the current iteration,  is the step size, and F  is the 

gradient. The derivative can be calculated in equations (8), 
(9), and (10).  
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Where,             
rr HH

r PAPd
GG

GGGG )(),()(           (9) 

)()()(
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)(I  is the count of the graphoneme string, 1ne
eG , occurred 

in a training word token.  

4. EXPERIMENTAL RESULTS 

4.1. Experiment settings 
We used three databases (or pronunciation dictionaries), 
NetTalk, CMUDICT and NAME. The NetTalk dictionary is 
publicly available and was originally developed and 
manually aligned by Sejnowski and Rosenberg for training 
the NetTalk neural network [20]. It has 19,802 word entries. 
Some words are with multiple pronunciations and the total 

number of entries is 20,008. A one-to-one alignment 
between the letter string and the phoneme string is given in 
the dictionary. The CMU dictionary consists of more than 
119,000 words, with corresponding more than 127,000 
pronunciations [21]. NAME is a proprietary, name 
dictionary of 83,042 words. For each corpus, we use 90% 
data for training and the rest 10% for testing. In the selecting, 
each lexicon is alphabetically ordered and every 10th sample 
is selected to form the testing set.  

4.2. Result of Baseline systems 
In the baseline system, several parameters are investigated, 
including: the order of N-gram, the smoothing algorithm, the 
cut-off threshold and unit numbers. We used 4-grams as the 
language model, Knesser-Ney algorithm for smoothing [19]. 
We tuned other parameters according to different corpus, 
and got the results shown in table 1. The performances are 
comparable with other state of the art LTS systems 
[6,7,9,10]. 
 

Table 1. Baseline result of letter-to-sound. 
 Word Error Rates 
NetTalk 34.3% 
CMUDICT 26.7% 
CMUDICT(*) 34.0% 
NAME 55.2% 

 

Here, CMUDICT(*) refers to the fact that stressed vowels 
are marked in the dictionary. Among all databases, NAME 
gets the worst error rate, which is consistent with the 
discovery made by Black [6]. In their research, 79% of LTS 
errors of CMUDICT are from names.  

4.3. The iteration curve of training and testing set 
The word error rate evolution of training and testing sets in 
the MPE-based discriminative training procedure is shown 
in Fig. 1. The NAME is used as the training and testing 
corpus.  
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Figure 1. Word error rates of each iteration using MPE.  

From the curve, we can observe that the word error rate of 
the training set decreases steadily with more iterations. 
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However, the error rate of the testing set decreases only in 
the beginning and then saturates.  

4.4 Discriminative training results in different corpus 
Table 2. Error rates and relative error reductions of 

discriminative training. 
 Error Rates / Relative Error reduction 

Baseline MMI MPE 
NetTalk 34.3% 32.7% / 4.7% 32.9% / 4.1% 
CMUDICT 26.7% 25.7% / 3.7% 26.0% / 2.6% 
CMUDICT(*) 34.0% 32.7% / 3.8% 32.4% / 4.9% 
NAME 55.2% 53.4% / 3.3% 52.0% / 5.8% 
Average 37.6% 36.1% / 3.8% 35.8% / 4.6% 

 
From these results, we can find that small (3.8-4.6%) but 
consistent improvements are obtained in the discriminative 
training under different training criteria (MMI and MPE) 
and across different databases. It should be noted that the 
baseline LTS module has been continuously tuned to get the 
best possible performance while the discriminative training 
of LTS N-grams is just our first attempt. We also tested all 
corpuses with different baseline settings and we obtained 
some consistent improvements after discriminative training. 
On average, MMI training yields a relative 3.8% reduction 
of errors and MPE training yields a slightly better, 4.6%, 
error reduction. That confirm with the similar findings in 
speech recognition with MPE, i.e., by localizing or refining 
the error resolution, we can train a better discriminative 
model.  

4. CONCLUSION  

In this paper, we proposed to use discriminative training for 
improving letter-to-sound conversion performance. It is built 
upon a baseline LTS module of graphoneme N-grams. By 
using MMI and MPE criteria in refining the graphoneme N-
gram models, small but consistent LTS performance 
improvements are obtained. A 3.8% relative reduction of 
errors is obtained with MMI and 4.6% with MPE. In the 
future, we will test other discriminative training criteria like 
large margin for improving LTS performance further. 
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