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ABSTRACT
 
We propose a cross-language state mapping approach to HMM-
based bilingual TTS. Two language-dependent decision trees are 
built first with a bilingual speech database recorded by a single 
speaker. A state mapping for every leaf node in the decision tree of 
a target language is created by finding the nearest leaf node in the 
tree of a source language. Kullback-Leibler divergence between 
two distributions is used to find the nearest leaf node. To 
synthesize target language speech by a monolingual, (source 
language) speaker's voice, we find HMM parameters trained by the 
monolingual (source language) speaker in the mapped leaf nodes. 
Similar mappings can be constructed by reversing the source and 
target languages. With these bi-directional cross-lingual mappings, 
we can synthesize bilingual or mixed-code speech by HMMs 
trained by any monolingual speaker. High voice (speaker) 
similarity is preserved in synthesized speech of the target language. 
Two perceptual tests on synthesized Mandarin speech confirms 
high intelligibility with a Chinese character transcription accuracy 
of 92.1% and an MOS score of 3.08. 
 

Index Terms — Bilingual, state mapping, new language 
synthesis, HMM-based TTS 
 

1. INTRODUCTION 
 
With globalization of today's world, many telecommunication 
applications, e.g. information inquiry, reservation and ordering, 
and reading emails by TTS, demand a multilingual TTS system, in 
which one engine can synthesize multiple or even mixed-
languages by the same voice. In foreign language learning, a 
multilingual TTS system can be a useful learning aid for foreign 
language learners. The aid can be even more attractive if sentences 
in a foreign language can be synthesized in a learner's own voice. 

There are many studies on multilingual TTS systems [1-8]. In 
[1], a universal algorithm was proposed to synthesize multiple 
languages. Most multilingual TTS systems, which are based on a 
concatenation technique, use a pre-recorded multilingual corpus 
uttered by the same speaker and share a common unit selection 
module across different languages, while language-specific 
processing, e.g., phone and text analysis, is not shared. In [7], a 
synthesizer can synthesize mixed phonetic transcriptions in 
different languages by monolingual voices. It uses a phoneme 
mapping algorithm, which is based upon similarity of phonetic-
articulation features between phonemes specified by IPA. Recently, 

HMM-based TTS has been successfully applied to TTS synthesis 
of many different languages [9]. An HMM is a statistically trained 
parameterized model. Spectral envelopes, fundamental frequencies 
and state durations are modeled simultaneously by corresponding 
HMMs. For a given text sequence, speech parameter trajectories 
and corresponding signals are generated from trained HMMs in the 
Maximum Likelihood (ML) sense. 

 Acoustic similarity between two phones can be measured in 
Kullback-Leibler divergence (KLD) between corresponding 
HMMs. KLD provides a useful measure to facilitate parameter 
sharing and mapping among HMMs. In [8], an average voice is 
first trained by using speech data of several speakers in different 
languages. The average voice model is then adapted to a specific 
speaker. As a result, the specific speaker can then be trained to 
speak all the languages in the training set. 

Recently we proposed to build an HMM-based, Mandarin and 
English, bilingual TTS system [10]. In this system, we use a 
bilingual corpus recorded by a single speaker and construct a new, 
mixed-language TTS with both language-specific and language-
independent questions to facilitate phone sharing across the two 
languages. However, to build a large inventory of bilingual voice-
fonts of multi-speakers is not trivial when we need to find speakers 
who are fluent in both languages to record their bilingual voices. 
 

2. AN HMM-BASED BILINGUAL TTS SYSTEM 
 
A conventional, rather straightforward approach to bilingual 
HMM-based TTS is to build two monolingual HMM systems by 
sharing common phones between two languages. To maintain a 
universal voice quality, usually a corpus of two covered languages 
is recorded by one bilingual speaker. To reduce a recording effort 
and to maximize training efficiency of a speech database, the 
smallest possible phone set which covers all the phones of two 
languages is used for training HMMs. For a case of the study of 
Mandarin-English bilingual TTS, we realize that Mandarin is a 
tonal language in the Sino-Tibetan family, while English is a 
stress-timed language in the Indo-European family. In terms of 
phonemes (IPA symbols) of the two languages, only a small 
percentage of phonemes, i.e., eight consonants and two vowels can 
be shared [10]. To improve possible sharing, we argue that despite 
the difference between phonemic structures of the two languages, 
it may still be possible to find more common acoustic attributes at 
a granular, sub-phonemic level. Numerous allophones, which are 
used in specific phonetic contexts, provide more chances of 
sharing HMM states between Mandarin and English. We have 
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proposed to share context-dependent HMM states for constructing 
a bilingual (Mandarin-English) TTS system [10] as illustrated in 
Figure 1. 
 

 
Fig. 1. The schematic diagram of an HMM-based bilingual 
(Mandarin-English) TTS system 
 

In this system, the training corpus consists of Mandarin and 
English sentences recorded by a bilingual speaker and a universal 
phone set, or a union of all the phones in English and Mandarin is 
used. Phone models of rich contexts, e.g. tri-phone, or models with 
even longer contexts like phone positions and POS, are used to 
capture acoustic co-articulation effects in HMM-based TTS. 
However, limited by the available training data, we have to tie the 
models of rich contexts into generalized ones so as to predict 
unseen contexts in testing. State tying via a clustered decision tree 
is used for this purpose. To train bilingual HMM TTS systems, 
states from different central phones across different languages are 
allowed to be tied together. Questions used in growing decision 
trees include: 

a) language-independent questions: e.g. Velar_Plosive, Does 
the state belong to velar plosive phones, which contain / / 
(Eng.), /k / (Eng.), /k/ (Man.) or /k / (Man.)? 

b) language-specific questions: e.g. E_Voiced_Stop, Does the 
state belong to English voiced stop phones, which contain 
/b/, /d/ and / /? 

According to the manners and places of articulations, supra-
segmental features, etc., we construct the questions to tie states of 
English and Mandarin phone models together. 

The new bilingual TTS system with context-dependent HMM 
state sharing across languages outperforms a simple baseline 
system where two individual, language-dependent HMMs are 
trained separately [10]. The new system has a smaller, about 40% 
less, footprint than the baseline system. Quality wise, the new 
system is either the same for non-mixed, Mandarin or English 
synthesis as the baseline or much better for mixed-language 
synthesis. The higher quality of mixed-language synthesis is 
confirmed by favorable subjective preference test results, 60.2% vs 
39.8% (  = 0.001, CI = [0.1085, 0.3004]) [10]. 
 
3. STATE MAPPING FOR NEW LANGUAGE SYNTHESIS 

 
To build a bilingual TTS system by recording a bilingual, single 
speaker database is no longer feasible if such a speaker is not 

available. Also, it is academically interesting to investigate how to 
synthesize a target language when only monolingual(source 
language) recordings from a desired speaker is available. 

Various speaker adaptation techniques have been successfully 
applied to HMM-based speech recognition. For synthesis, we can 
adapt bilingual HMMs to any specified monolingual speaker by 
means of supervised Maximum Likelihood Linear Regression 
(MLLR) adaptation [11]. For a small amount of adaptation data, a 
global transform can be generated and applied to every Gaussian 
component in a model set. As more adaptation data becomes 
available, the Gaussian components can be grouped into broad 
phonetic classes such as silence, glides, stops, nasals, etc. Then 
class specific transforms can be constructed. However, it is 
difficult to do speaker adaptation across different languages, 
especially when two languages are phonetically distant and very 
few phones can be shared. 

We propose a tied, context-dependent state mapping between 
two languages. The mapping is established first from a bilingual 
speaker and then used to synthesize target language speech from 
another monolingual (source language) speaker's voice. Details are 
given in the following subsections. 
 
3.1. Establishing State Mapping across Languages 
 
A tied, context-dependent state mapping between two languages 
needs to be established with a bilingual speech database recorded 
by a single speaker. Two language-specific decision trees are 
created separately with English and Mandarin data in the bilingual 
database. Each leaf node in the Mandarin decision tree has a 
mapped leaf node, in the minimum Kullback-Leibler divergence 
(KLD) sense, in the English tree. The state mapping (from 
Mandarin to English) is shown in Figure 2. This directional 
mapping can have more than one leaf nodes in the Mandarin 
(target) tree mapped to the same leaf node in the English (source) 
tree as shown in the figure. Mappings from English to Mandarin 
can be similarly done in a reverse direction. 

KLD is an information-theoretic measure of (dis)similarity 
between two probability distributions. When the temporal structure 
of HMMs is aligned by dynamic programming, KLD can be 
further modified to measure the difference between HMMs of two 
evolving speech sounds [12,13]. For two given distributions P and 
Q of continuous random variables, a symmetric form of KLD 
between P and Q is: 
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where p and q denote the densities of P and Q. For two 
multivariate Gaussian distributions, Eq. (1) has a closed form: 
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where  and  are corresponding mean vectors and covariance 
matrices, respectively. 

In HMM-based speech synthesis, spectrum, pitch and 
duration are separated into three streams and stream-dependent 
models are built to cluster those three features into separate 
decision trees. Spectrum and duration features are modeled by 

4642



HMMs. We apply Eq. (2) to measure the similarity between two 
tied states of HMMs. Pitch features are modeled by MSD-HMM, 
which was proposed to model two, discrete and continuous, 
probability spaces, discrete for unvoiced segments and continuous 
for voiced F0 contours [14]. The upper bound of KLD between 
two states of MSD-HMMs is written as: 
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(3) 
where w0 and w1 are the prior probabilities of unvoiced and voiced 
subspaces, respectively. Both English and Mandarin have trees of 
spectrum, pitch and duration. Each leaf node of those trees is used 
to establish a mapping between English and Mandarin. 
 

English Tree
Bilingual speaker A

Mandarin Tree
Bilingual speaker A

 
Fig. 2. Cross-language state mapping from a Mandarin decision 
tree to an English one. 
 
3.2. Using State Mapping for a Monolingual Voice 
 
To synthesize speech in a target language without pre-recorded 
data from a desired speaker who is monolingual in a source 
language, we have to utilize the state mapping established 
previously with data of a bilingual speaker. A context-dependent, 
state mapping trained from speech data of a bilingual (English-
Mandarin) speaker A is used to choose appropriate states trained 
from speech data of a different, monolingual English (source 
language) speaker B to synthesize Mandarin (target language) 
sentences as illustrated in Figure 3. 

In the training phase, the same decision tree structure used for 
the bilingual speaker A (on his English data) is shared in training 
models for the monolingual, English speaker B. In other words, the 
data of speaker B traverse through the English decision tree of 
speaker A by following the same contextual questions at each tree-
node splitting to update the mean and variance accordingly. In 
synthesizing a Mandarin sentence with the monolingual English 
speaker's model, appropriate contextual labels of the input 
Mandarin sentence are firstly retrieved by traversing the Mandarin 

decision tree trained by speaker A with the corresponding leaf 
nodes. Via state mappings between the two decision trees, HMM 
parameters at the leaf nodes of the English tree of speaker B can be 
retrieved. Similarly, the state mappings from English to Mandarin 
can be used for synthesizing English sentences with a monolingual, 
Mandarin speaker C's voice. 
 

Untied context-dependent HMMs from
monolingual English speaker B

English Tree
Bilingual speaker A

Monolingual speaker B

A leaf where data are of the monolingual speaker B
A leaf where data are of the bilingual speaker A

Mandarin Tree
Bilingual speaker A

 
 
Fig. 3. Synthesizing Mandarin sentences by using a monolingual 
English speaker B's voice via cross-language state mappings. 
 

4. EXPERIMENTS AND EVALUATIONS 
 
4.1. Experimental Setup 
 
Two corpora, both phonetically and prosodically rich, in broadcast 
news style are used in our experiments. One is a bilingual 
(Mandarin and English) corpus, recorded by a female speaker. The 
other one is a monolingual English corpus recorded by a female 
speaker of American English. Table 1 lists the number of sentences 
in these two corpora. Testing data consist of 70 Mandarin 
sentences. Speech signals are sampled at 16 kHz, windowed by a 
25-ms window with a 5-ms shift, and LPC spectral features are 
transformed into 40th-order LSPs and their dynamic counterparts. 
Five-state, left-to-right HMMs with single, diagonal variance 
Gaussian distributions are adopted for training phone models. 
 

Table 1. The number of sentences in the two corpora 
 

Corpus/Speaker bilingual monolingual 
Mandarin 1,000 N/A 
English 1,024 1,503 

 
We use two different methods to synthesize Mandarin speech 

with the voice of the monolingual English speaker. 
 
Method I: Speaker adaptation for bilingual HMMs 
The bilingual corpus is used to build an HMM-based bilingual 
(Mandarin-English) TTS by means of context-dependent state 
sharing presented in Section 2. We use monolingual English 
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sentences to adapt the bilingual HMMs in the MLLR sense for 
Mandarin synthesis. 
 
Method II: Across-language state mapping 
With two separate, language-specific decision trees built for 
Mandarin and English data in the bilingual corpus, mappings from 
leaf nodes of the Mandarin tree to those of the English tree are 
established as described in Section 3.1. Mandarin LSP trajectories 
are generated with parameters of the monolingual English voice in 
mapped states. 
 
4.2. Evaluation Results and Analysis 
 
In Method I we adapted the bilingual speaker's HMMs toward the 
monolingual (English) speaker's voice. However, in cross-
language speaker adaptation there may be only limited phonetic 
units shared between the two languages. Consequently, even with 
ample adaptation data from the monolingual (source language) 
speaker, HMMs in the target language may still not be adequately 
adapted. With 500 sentences as adaptation data from the 
monolingual (source language) speaker to construct 32 
transformation MLLR matrices, synthesized Mandarin speech still 
sounds similar to the original bilingual speaker. Since the 
adaptation based Method I is not successful, we switch to Method 
II of cross-language state mapping based target language synthesis. 

In an oracle experiment with Method II where we use the 
English model of the bilingual speaker to synthesize Mandarin 
sentences, we notice that the dynamic range of F0 contours 
predicted by cross-language mapped HMMs is smaller than that by 
monolingual Mandarin HMMs. After analyzing the English and 
Mandarin training data, we find that the dynamic range of F0 in 
Mandarin sentences is much larger than that in English. F0 means 
and standard deviations of the two corpora are shown in Table 2. 
The larger variance of Mandarin F0 is partially due to the lexical 
tones of Mandarin where the intrinsic variations in four (or five) 
lexical tones increase its F0 dynamic range. Therefore, to 
synthesize Mandarin speech in Method II with a monolingual 
English voice, we change the F0 mean of the Mandarin tree in the 
bilingual model to that of the monolingual speaker and keep the 
same F0 variance of Mandarin speech. Resultant synthesized 
Mandarin speech sounds very similar to the original monolingual 
English speaker. 

Two perceptual tests were conducted to evaluate the quality 
of Mandarin speech synthesized with Method II. Intelligibility Test: 
five native Mandarin speakers were asked to transcribe 20 
sentences randomly selected from a set of 70 synthesized 
sentences. A 92.1% of Chinese character accuracy of transcription 
is obtained. Quality Test: the same five subjects were asked to give 
their opinions on the synthesized speech quality in a five-point 
scale MOS [15]: 5=excellent, 4=good, 3=fair, 2=poor, 1=bad. An 
average MOS score of 3.08 is obtained. 
 

Table 2. F0 means and standard deviations of the training data. 
 

Speaker bilingual monolingual 
Language Mandarin English English 
mean (Hz) 198.5 198.3 180.7 
std (Hz) 49.62 37.39 34.55 

 
 
 

5. CONCLUSIONS 
 
We propose a cross-language, HMM-state mapping between two 
language-specific decision trees for synthesizing a target language 
using a monolingual (source language) voice. State mappings are 
created in the minimum KLD sense between leaf nodes of the 
bilingual trees. A sentence transcription based perceptual test 
confirms that the synthesized Mandarin speech is highly 
intelligible and a Chinese character accuracy rate of 92.1% is 
obtained. Although cross-language mapping in this study was 
tested only on a bilingual corpus recorded by a single speaker, the 
approach can be easily expanded to multiple (>2) languages. 
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