
SPEAKER AND STYLE ADAPTATION USING AVERAGE VOICE MODEL FOR STYLE
CONTROL IN HMM-BASED SPEECH SYNTHESIS

Makoto Tachibana, Shinsuke Izawa, Takashi Nose, Takao Kobayashi

Interdisciplinary Graduate School of Science and Engineering,
Tokyo Institute of Technology, Yokohama, 226-8502 Japan

Email: {makoto.tachibana,shinsuke.izawa,takashi.nose,takao.kobayashi}@ip.titech.ac.jp

ABSTRACT

We propose a technique for synthesizing speech with desired
style expressivity of an arbitrary target speaker’s voice. In an MLLR-
based speaker adaptation technique for multiple regression hidden
semi-Markov model (MRHSMM), the quality of synthesized speech
crucially depends on the initial MRHSMM trained from a certain
source speaker’s data and it is not always possible to synthesize nat-
ural sounding speech with a given target speaker’s voice. To over-
come this problem, we perform simultaneous adaptation of speaker
and style from an average voice model. Experimental results show
that the proposed technique provides more natural sounding speech
than the conventional one with speaker adaptation only.

Index Terms— expressive speech synthesis, style control, hid-
den Markov model, speaker adaptation, average voice model

1. INTRODUCTION

Recently, there is a demand for speech synthesis system capable of
expressing various emotions and speaking styles with diverse speaker
characteristics. Although many attempts have been made to synthe-
size expressive speech [1–3], most of them have not always been
successful in diversifying styles as well as speaker characteristics.
For this purpose, we have proposed a style control technique based
on multiple regression hidden semi-Markov model (MRHSMM) [4]
in an HMM-based speech synthesis framework. In the MRHSMM-
based style control, the mean parameter of the model is given by
multiple regression of a low dimensional vector called style vec-
tor. By changing the value of the style vector, we can control the
degree of the style expressivity in a simple way. Moreover, we
have also proposed an MLLR-based speaker adaptation technique
for MRHSMM [5] for the style control of arbitrary speaker’s voice
with only a small amount of target speaker’s data.

In our previous work [5], an initial MRHSMM was trained using
a sufficient amount of speech data of a certain source speaker, and
adapted to a target speaker’s model using a small amount of adapta-
tion data. However, the quality of synthesized speech of the adapted
model depends on the given source speaker’s model crucially and it
is not always possible to synthesize natural sounding speech of ar-
bitrary target speakers. A possible approach to solving this problem
is to use several types of initial MRHSMM or speaker-independent
MRHSMM trained from multiple speakers. However, it is not easy
to prepare a large amount of multiple speakers’ data for all styles
and add a new target style from the viewpoint of recording cost.
Moreover, speech characteristics of each style vary depending on in-
dividuals and speaker-independent MRHSMM might not be trained
appropriately.

To overcome this problem, we propose an alternative approach
to training MRHSMM using an average voice model [6] and simul-
taneous adaptation of speaker and style. The average voice model
is a speaker-independent neutral style HSMM trained from multiple
speakers’ neutral style speech. We adapt the average voice model
to target speaker’s styles using a technique for simultaneous adapta-
tion of speaker and style. Then, the initial MRHSMM is estimated
by the least square method from the adapted HSMMs. This initial
MRHSMM will decrease dependency on the source speaker’s char-
acteristics of the initial model.

2. MODEL ADAPTATION FOR MRHSMM

2.1. Style Control Based on MRHSMM

In the MRHSMM-based style control technique [4], each speech
synthesis unit is modeled by an N -state HSMM. It is assumed that
the output probability density functions (pdfs) bi(o) and state du-
ration pdf pi(d) at state i are characterized by mean vector μi and
diagonal covariance matrix Σi, and mean mi and variance σ2

i , re-
spectively. In MRHSMM, we further assume that μi, mi are mod-
eled using multiple regression as

μi = Hbiξ, mi = Hpiξ (1)

where

ξ = [1, v1, v2, · · · , vL]� = [1, v�]� (2)

and v is a style vector, L is the dimensionality of the style space. The
component vk of the style vector represents the degree or intensity of
a certain style in speech. In addition, Hbi and Hpi are regression
matrices of dimension M × (L + 1) and 1 × (L + 1) respectively,
and M is the dimensionality of μi.

When the training data and corresponding style vectors are given,
the parameters of MRHSMM, i.e. Hbi ,Σi, Hpi , and σ2

i can be es-
timated using EM algorithm [4].

2.2. Model Adaptation for MRHSMM

In the MLLR-based model adaptation technique for MRHSMM [5],
the mean vector of the output pdf of the target speaker’s model is
assumed to be given by an affine transformation of that of the initial
model as follows:

μ̂i = bbi + Abiμi (3)

where μi and μ̂i are the mean vectors of the initial model and target
speakers’ model. Abi is transformation matrix and bbi is a bias vec-
tor. In MRHSMM, since μi and μ̂i are given by multiple regression
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of the style vector as

μi = Hbiξ, μ̂i = Ĥbiξ, (4)

Eq. (3) becomes

Ĥbiξ = bbi + AbiHbiξ. (5)

We assume that the bias term bbi is also given by multiple regression
of the style vector as bbi = Bbiξ, Eq. (5) is rewritten as

Ĥbiξ =(Bbi + AbiHbi) ξ. (6)

Consequently, the linear transformation for the output pdf is given
by

Ĥbi = Bbi + AbiHbi . (7)

Similarly, the linear transformation for the state duration pdf is given
by

Ĥpi = Bpi + ApiHpi . (8)

Estimation formulas of these transformation matrices can be found
in [5].

3. MRHSMM TRAINING FROM AVERAGE VOICE
MODEL

3.1. Overview of the Proposed Training Method

An outline of the conventional and proposed methods is shown in
Fig. 1. In our previous work [5], an initial MRHSMM is trained
using a sufficient amount of speech data of a source speaker, and
adapted to a target speaker’s model using a small amount of adapta-
tion data. On the other hand, the proposed method utilizes the aver-
age voice model trained by multiple speakers’ neutral style speech
data. We adapt the average voice model to target speaker’s styles
using a technique for simultaneous adaptation of speaker and style.
Although it would be possible to synthesize target speaker’s spe-
cific style speech from the speaker- and style-adapted HSMM, we
further train MRHSMM using the adapted HSMMs to enable us
to control the degree of the style expressivity, More specifically,
the initial MRHSMM is estimated using the least square method
from each speaker- and style-adapted HSMM.By using this initial
MRHSMM, we can decrease dependency on the source speaker’s
characteristics of the initial MRHSMM. Then, in the same manner
as the conventional method, the initial MRHSMM is adapted to the
target speaker’s MRHSMM by MLLR-based adaptation technique.
Furthermore, the adapted model is modified using ML estimation.

3.2. Simultaneous Adaptation of Speaker and Style

For neutral reading style speech, we have already shown that the
speech synthesis method using an average voice model and speaker
adaptation technique is effective when only a small amount of tar-
get speaker’s data is available [6]. Moreover, in a similar way to
the speaker adaptation technique, style adaptation technique is capa-
ble for converting neutral style speech into another style [7]. In this
study, we adapt not only speaker’s characteristics but also charac-
teristics of each style simultaneously and obtain speaker- and style-
adapted HSMM in each style.

In the simultaneous adaptation of speaker and style, the mean
vector of average voice model and covariance matrix of output pdf
μi, Σi and mean and variance of the state duration pdf mi,σ2

i are
linearly transformed as follows:

μ̂i =ζμi − ε, Σ̂i =ζΣiζ
� (9)

m̂i =χmi − ν, σ̂2
i =χσ2

i χ (10)
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Fig. 1. An outline of conventional and proposed methods.

where ζ, ε are transformation matrix and bias vector for output pdf
and χ, ν are transformation coefficient and bias term, respectively.
We use HSMM-based constrained structural maximum a posteriori
linear regression (CSMAPLR) algorithm [8] as the linear transform
algorithm.

3.3. Calculation of Initial MRHSMM by Least Square Method

The regression matrices of MRHSMM are calculated from the pa-
rameter of each style-adapted HSMM obtained in 3.2 by the least
square method. Suppose that speech database contains S styles and
each style mean vector and corresponding style vector is given by
μ

(s)
i (1 ≤ s ≤ S), ξ(s), respectively. We choose Hbi that mini-

mizes

E =
S∑

s=1

∥∥∥μ(s)
i − Hbiξ

(s)
∥∥∥2

(11)

as the regression matrices of the initial MRHSMM. By differentiat-
ing E with Hbi and setting the result zero, we have

Hbi =

(
S∑

s=1

μ
(s)
i ξ(s)�

)(
S∑

s=1

ξ(s)ξ(s)�
)−1

. (12)

In addition, the regression matrices for the state duration pdf Hpi

can be estimated in a similar way. In this study, Hbi , Hpi are used
as the initial model for MLLR-based model adaptation.

3.4. Model Modification Using ML estimation

By using ML estimation, we further modify the regression matrix
Ĥbi as follows:

Hbi =
τoutĤbi + Γout(i)H

ML
bi

τout + Γout(i)
(13)
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Table 1. Evaluated MRHSMMs.
Model Initial Model Adaptation Data

A FTY (450 sent.×4 styles) 50 sent.×4 styles
B MMI (450 sent.×4 styles) 50 sent.×4 styles
C MJI (450 sent.×4 styles) 50 sent.×4 styles
D target speaker (50 sent.×4 styles) no adaptation
E target speaker (450 sent.×4 styles) no adaptation
F average voice model

50 sent.×4 styles
(proposed) (450 sent.×9 persons)

where

Γout(i) =
K∑

n=1

T (n)∑
t=1

t∑
d=1

γd
t (i) · d. (14)

Ĥbi is the regression matrix transformed by MLLR-based adapta-
tion in Eq. (7), and HML

bi
is the regression matrix estimated from

the adaptation data in ML sense using EM algorithm [4]. τout is a
positive parameter used to control the modification weight, K is the
total number of the observation sequences, T (n) is the number of
frames of the the n-th observation sequence O(n), and γd

t (i) is the
probability of being in state i at period of time from t − d + 1 to t
given O(n). When enough adaptation data is available at state i, the
regression matrix Hbi approaches to the HML

bi
. Hpi is modified

in a similar manner.
The effect of this modification is similar to that of a combined

approach based on maximum a posteriori (MAP) adaptation [9] for
HSMM [10].

4. EXPERIMENTS

4.1. Experimental Conditions

We used four styles of read speech — neutral, sad, joyful, and rough
(impolite) styles. Speech database contains 503 phonetically bal-
anced ATR Japanese sentences uttered by two male and one female
professional narrators, MMI, MJI and FTY, respectively, in each
style, and is the same one used in our previous study [5]. The average
voice model was trained using five male speakers and four female
speakers’ utterances taken from the ATR Japanese speech database
(Set B). The training data were 450 sentences for each speaker, 4050
sentences in total. In the training stage of the average voice models,
The shared-decision-tree-based context clustering (STC) algorithm
and the speaker adaptive training (SAT) [11] were applied.

Speech signals were sampled at a rate of 16kHz and windowed
by a 25-ms Blackman window with a 5-ms shift. Then mel-cepstral
coefficients were obtained by mel-cepstral analysis. The feature vec-
tor consisted of 25 mel-cepstral coefficients including the zeroth co-
efficient, logarithm of fundamental frequency, and their delta and
delta-delta coefficients. We used 5-state left-to-right MRHSMM
with diagonal covariance. A three-dimensional style space [4] was
used as shown in Fig. 1, and style vectors of training and adapta-
tion data were set as (0,0,0) for the neutral style, (1,0,0), (0,1,0), and
(0,0,1) for the sad, rough, and joyful styles, respectively.

Table 1 shows the evaluated MRHSMMs. In the table, “A,” “B,”
and “C” are models obtained by the conventional speaker adaptation
method from a source speaker’s model, “D” and “E” are speaker-
dependent MRHSMMs of the target speaker, “F” is the model ob-
tained by the proposed method using average voice model, respec-
tively. In models A, B, C, and F, the adaptation data were target
speaker’s 50 sentences in each style, 200 sentences in total and the
adaptation was performed using MLLR-based adaptation and ML
estimation.
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Fig. 2. Evaluation of adaptation performance for target speakers
(a) FTY, (b) MMI, and (c) MJI.

Subjects were eight persons in all tests. For each subject, eight
test sentences were chosen at random from 53 test sentences that
were contained in neither the training data nor adaptation data 1.

4.2. Subjective Evaluation of Reproducibility

We first evaluated reproducibility of styles and speaker’s character-
istics by a Comparison Category Rating (CCR) tests. The scale for
the CCR test was 5 for very similar and 1 for very dissimilar to refer-
ence speech. The reference speech was a target speaker’s real utter-
ance with a mel-cepstral vocoder. Test samples were generated from
the MRHSMMs with the same style vector used for training in each
style. Figure 2 shows the scores with 95% confidence interval of the
test. From the result, we can see that the reproducibility of the syn-
thesized speech from adapted models depends on the initial model
when the adaptation was performed from a specific speaker’s model
(A, B, and C). Especially, the similarity between the synthetic speech
and the reference speech was greatly decreased when the adaptation
was performed from the male speaker’s model to the female speaker
FTY. On the other hand, the score of the proposed technique (model
F) is stable for all target speakers and styles. Since the correct clas-
sification rates of the subjective classification tests for the synthetic
speech generated from adapted MRHSMMs using the conventional
method and speaker-dependent MRHSMMs were more than 80%
[5], that of the proposed method would be comparable.

4.3. Subjective Evaluation with Changing Style Vector

We next evaluated the naturalness of the synthesized speech of the
proposed technique when changing the intensity of each style. For

1Several speech samples used in the test are available at
http://www.kbys.ip.titech.ac.jp/research/demo/.
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Fig. 3. Evaluation of naturalness in style control for FTY.

each style except for the neutral style, we changed the style compo-
nent corresponding to the target style from 0.5 (weaken the intensity
of the target style) to 1.5 (emphasize) with an increment of 0.5 and
fixed the other style components to zero. Subjects rated the natural-
ness of the test samples using a 5-point scale including 5 for good,
3 for acceptable, and 1 for bad. Figures 3 and 4 show the results
for the female speaker FTY and that for the male speaker MMI with
95% confidence interval of the test, respectively. Note that we con-
firmed the result of the male speaker MJI had a similar tendency to
that of MMI. We can see that naturalness of the synthesized speech
from the proposed technique (model F) was stable and closest to that
from speaker-dependent MRHSMM (model E). Moreover, the score
of model F exceeded that of speaker-dependent model trained by 50
sentences of the target speaker (model D) in almost all cases. There-
fore, the proposed technique would be more effective when only a
small amount of target speaker’s style data is available.

5. CONCLUSION

In this paper, we have proposed a training method for multiple re-
gression hidden semi-Markov model (MRHSMM) using an average
voice model and simultaneous adaptation of speaker and style. From
the results of subjective evaluation tests, we have shown that the
proposed technique provides more natural speech than the conven-
tional one with speaker adaptation only and dependency on the initial
model can be decreased. Our future work is further improvement in
naturalness of the synthesized speech when the intensity of styles is
emphasized.

6. ACKNOWLEDGMENTS

A part of this work was supported by Grant-in-Aid for JSPS Fellows
(1910295).

7. REFERENCES
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