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ABSTRACT

In the literature many intonation models are trained using pa-
rameters extracted sentence-by-sentence on contours interpolated in
the unvoiced segments. This may introduce a bias in the nal param-
eters and a reduction of the generalization of the model due to the
increased dispersion of them. Recently, we have proposed JEMA,
a joint extraction and prediction approach for intonation modeling
that avoids such assumption. The parameter extraction and model
training are combined in a loop where i) the model is successively
re ned, and ii) the parameters are extracted using information pro-
vided by the model. In this papers we present experiments based on
synthetic data to evaluate this approach in a controlled environment.
Both, the results with synthetic data and with natural speech, show
that the use of JEMA is clearly superior to the standard estimation
approach. The parameters are correctly extracted using several de-
grees of missing data (0% to 80%) and gaussian noise. In fact, the
study shows that including JEMA in the training algorithm is even
more relevant than the selection of a particular representation of the
intonation contours, as Fujisaki, Bèzier, Tilt, or others.

Index Terms— Speech synthesis, Intonation Modeling.

1. INTRODUCTION

Nowadays, most of the intonation models for text-to-speech synthe-
sizers are generated using corpus-based approaches. Machine learn-
ing techniques are frequently applied to uncover the mapping be-
tween the linguistic features and the fundamental frequency contour.
This process is named training of the intonation model.

In general we can distinguish three aspects: the mathematical
formulation used to describe the frequency contours, the estimation
of the parameters of the training data and the training of the model
to map the linguistic features and the parameters.

Several mathematical formulations have been proposed to de-
scribe the fundamental frequency contour using a compact represen-
tation: exponential (Fujisaki [1]), polynomial (Tilt [2] and Bezier
[3]), piecewise lineal (IPO [4]), etc.

For each training utterance, the parameters of the model are es-
timated to t the real intonation contours. In some mathematical
formulations, a close-form solution exist. However, in many cases,
optimization algorithms as gradient descent or genetic algorithms
need to be applied.

The training of the intonation model is the last step. It consists of
nding the mapping function that generates a fundamental frequency
contour (f0) given a set of linguistic features (F ) extracted from the
text available in a text-to-speech system: G(F ) = f̂0. In the case
of data-driven approaches this task is done minimizing the energy of
the prediction error (e = f0 −G(F )) for the training data.

Traditionally, the parameter estimation is applied sentence-by-
sentence to the whole training data. Afterwards, the mapping model
is estimated [5, 6]. Many intonation modeling techniques made use
of some avoidable assumptions they may harm the task of intonation
model training:

• Continuity of the fundamental frequency contour. Some into-
nation models need continuous fundamental frequency con-
tours to perform parameterization. Interpolation techniques
are used to ll the unvoiced regions of speech. The main
drawback is that the interpolated contours may bias the esti-
mation of the parameters.

• Removal of noise and microprosody. The fundamental fre-
quency extraction on a speech signal is a task prone to er-
rors: pitch halving, pitch doubling, microprosody and mea-
surement errors in voiced-unvoiced boundaries are sources of
noise. Smoothing techniques are applied to remove such ef-
fects. However, this smoothing process may introduce new
noise.

• Parameter ambiguity. In some optimization methods or even
in some mathematical formulation (e.g.: Fujisaki), several
values of the parameters can provide good approximations
to the fundamental frequency contour. This makes the pre-
diction task more dif cult, because similar contours can have
different parameterizations, increasing the dispersion of the
parameters.

Recently we have proposed JEMA, a Joint Estimation and Mod-
eling Approach. Once the mathematical formulation is chosen, the
parameter estimation and the training of the model are combined
in a loop. Section 2 describes the JEMA methodology and discuss
why JEMA overcomes the previous assumptions, producing better
intonation models. In Section 3 we show the results of several ex-
periments applying the proposed approach to two mathematical for-
mulations: Bezier and Fujisaki. In order to compare JEMA with the
classic estimation procedure (SEMA, sentence-by-sentence parame-
ter estimation and modeling approach), we propose to use not only
real intonation contours, but also simulated data where the designed
features are designed to be perfectly correlated with the contours and
we can control the experimental conditions. Finally, in Section 4 we
provide some conclusions.

2. JOINT EXTRACTION AND MODELING APPROACH

In this paper we study an intonation model training technique that
combines parameter extraction and the generation of the mapping
function G(F ) = f0 in a loop, as shown in Figure 1.

As intonation model we use regression trees. This model not
only provides the function f̂0 = G(F ) but also clusters the training
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Fig. 1. Joint Extraction and Modeling Approach loop

data according to F . Other clustering algorithms can be applied into
this scheme. An optimal clustering of the feature space (see gure 2)
lets the contours of the f0 space to be assigned to classes that will be
represented by the same set of parameters, such as Fujisaki, Bèzier,
Tilt, etc.

Fig. 2. Classes of contours given a clustering of the feature space

In our proposal, the parameters that represent each class of the
cluster are calculated using a global optimization algorithm over all
data available for training. One of the most important consequences
of this con guration is that we do not need to interpolate the fun-
damental contours. The missing information of some contours that
belong to a given class is compensated by the other contours of the
class. In the same way, the use of a a global optimization minimizes
the effect of the noise. And nally, minimizes the effect of ambi-
guities in the mathematical representation (multiple solutions with
similar contours) or in the maximization algorithm (local minim).

On the other hand, all contours that belong to a given class will
share the same set of parameters which will be optimal for the class.
This global optimization leads the decisions of the clustering on the
feature space to nd out the optimal classes of contours.

In order to illustrate the process of intonation model training we
show an example with just two sentences. In the example, we use a
piecewise formulation: each contour is represented as a sequence of
intonation units which are modeled independently.

• Initialization. Initially only one class exists, because the tree
has only the root node. In this way, all prosodic units (ac-
cent groups, minor phrases) will be represented by the same
set of parameters, as shown in Figure 3. These parameters
are calculated using a global optimization algorithm over all
training data.

• Splitting. The linguistic features are used to split the training
data. The clustering splits the training data in two classes
( gure 4).

• Optimization. When the new classes are obtained, a global
optimization algorithm is used to nd the new optimal pa-

Fig. 3. Approximation with class 0 contour.

Fig. 4. Approximation with classes 1 and 2.

rameters (Figure 5). Depending on the parameterization, if
the optimal solution has not closed-form (e.g.: Fujisaki’s in-
tonation model), this optimization can be time consuming. In
such cases hill-climbing algorithms are required to nd the
optimal solution.

Fig. 5. Approximation with two classes.

• Scoring of the splitting. The new parameterization is used to
measure the improvement of the goodness measure compared
to its value previous to the splitting.

• Selection of the highest improvement. After all possible
splittings are tried, the splitting with the highest improvement
is chosen as the best split and the tree is updated for the next
iteration.

• Stopping condition. The decision of another iteration for an
additional splitting is performed taking into account a mini-
mum number of elements on each leaf and a minimum im-
provement of the goodness score.

This approach can be applied to several parametric intonation
models, because is a general technique to train intonation models, as
was already shown for Bèzier [7], Fujisaki [8] and Tilt [9].

The clustering in the example is done using decision trees. How-
ever, this approach may be applied to other clustering techniques of
the feature space, as shown in Agüero et al. [10].
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3. EXPERIMENTS

In this section, we compare JEMA, the training methodology ex-
plained in the previous section, with the classic sentence-by-sentence
parameterization approach (SEMA).

While the use of real data allows to draw the nal conclusions,
there are some characteristics of the intonation that make harder to
compare different estimation methods. First of all, the initial into-
nation curves may include pitch estimation errors and these uncon-
trolled errors may in uence our conclusions. Secondly, the math-
ematical formulation may not model exactly the intonation curves
produced by humans. Therefore, this lack of accuracy can mask the
effect of the estimation procedure. A third aspect is that the produc-
tion of human contours is not a deterministic process. Therefore,
using a real f0 contour as a reference of the prediction capability
of the model is just an approximation. And last but not least, the
linguistic features used to predict the f0 contour are not comparable
with the information that humans use to talk. Therefore, the errors
of each estimation methodology is contaminated by the fact that the
features are not complete. For these reasons, this section starts using
simulated date to analyse JEMA.

The arti cial contours are generated using a set of eight classes
with random parameters. Each class has a set of features that allow
its complete separation of the others. The parameters for each class
are selected so that the nal fundamental frequency contours range
from 100Hz to 200Hz.

Two parameterizations are evaluated. In the Bèzier, each con-
tour is represented as a piecewise curve. Each piece of the curve is
represented by a 3rd-order Bèzier polinomial, as shown in equation
1.
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The second parameterization is the superpositional model pro-
posed by Fujisaki, and expressed in equations 2, 3 and 4).
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Forty training contours are generated using different percent-
ages of arti cially generated missing data (0% to 80%) and several
levels of Gaussian noise with zero mean and standard deviation σ
(σ = 0Hz, σ = 1Hz, σ = 2Hz and σ = 3Hz). The missing
data models the presence of unvoiced segments deleting segments of
duration 50–100 msec. The duration of each contour is around 2–3
seconds and are composed by 4–8 minor phrases. The contours are
sampled at 200Hz.

In the experiments we compare the RMSE of the intonation
model generated by two training approaches: the classic SEMA
(Separate parameter Extraction and Modeling Approach) and our

new proposal JEMA (Joint parameter Extraction and Modeling Ap-
proach). As already mentioned, the parameters are derived sentence-
by-sentence for SEMA and globally calculated for JEMA, as shown
in [7, 8]. Leave-one-out training in order to obtain results which are
statistically reliable.

In the case of SEMA, the contours are pre-processed using linear
interpolation in the lost segments and a median lter.

3.1. Experimental results.

In Figure 6 we show the experimental results using Bèzier parame-
terization, training with SEMA (solid lines) and JEMA (dotted lines)
and adding different levels of noise: σ = 0Hz (diamond), σ = 1Hz
(star), σ = 2Hz (square) and σ = 3Hz (x-mark). The horizontal
axis represents different levels of missing data.

The models trained using JEMA have the same RMSE for any
level of missing data, and the increase of the error is only due to the
added noise. However, the models obtained using SEMA suffer a
strong impact in their performance with the increase of missing data.
The better performance is a direct consequence of the consistence of
the parameterization using global optimization. JEMA avoids the
bias the bias due to the unvoiced interpolation.
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Fig. 6. Results using Bèzier parameterization (training data).

Figure 7 shows the experimental results using Fujisaki’s param-
eterization. It can be observed that the parameters extracted without
added noise have a higher RMSE than in the Bezier parameterization
for the same condition. This is due to the sensitivity of the model on
the time instants of phrase and accent commands. A small difference
in time may introduce an error that varies depending on the choice
of the constants α and β. This effect is less signi cant for higher
values of σ due to a stronger in uence of the Gaussian noise in the
arti cial contours.

Figure 7 shows how SEMA is also outperformed by JEMA at
higher levels of missing data and added noise. Moreover, when miss-
ing data reaches 70% or 80%, the RMSE for SEMA is beyond the
y-axis of the graphic. Nevertheless, JEMA has a at performance at
all percentages of missing data.

The simulations show that it is more important the estimation
methodology (JEMA vs SEMA) than the method choosend to repre-
sent the intonation contour. For instance, for a noise level σ = 2Hz
and 30% of missing data, the results for Bèzier and Fujisaki, using
SEMA, are 3.1Hz and 2.5Hz, respectively. If JEMA is used, the
error is reduced to 2.0 and 2.2Hz.
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Fig. 7. Results using Fujisaki parameterization (training data).

3.2. Experimental results with real contours.

This section compares JEMA with SEMA using using real f0 con-
tours The models are estimated and evaluated using 220 paragraphs
of the baseline Spanish male voice of the TC-STAR project. Fig-
ure 8 shows that the results with real speech are consistent with the
ones obtained with simulated data. The gure shows the cumulative
density distribution of RMSE (in this case, we use log f0). For each
RMS value, the graph indicates the probability that the estimation
gives an error smaller that this value. It can be shown how the errors
are bigger for the SEMA estimation methodology (dashed line). This
is true for the two mathematical formulations considered in the pa-
per: Bézier (square) and Fujisaki (diamond). In fact the gure shows
that the use of JEMA is more relevant that the mathematic formula-
tion of the intonation contours: any models trained with JEMA is
better than any model trained with SEMA.

JEMA (solid line) has a better cumulative density distribution of
RMSE over the 220 paragraphs than SEMA (dashed line) for both
intonation models taken into account in this paper: Bézier (square)
and Fujisaki (diamond). Moreover, the results show that both mod-
els trained with JEMA are better than the best model trained with
SEMA.
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Fig. 8. Results using real contours.

4. CONCLUSIONS

In this paper we have analyzed a new approach for training intona-
tion models: JEMA (Joint parameter Extraction and Modeling Ap-
proach). It overcomes some limitations in the extraction of parame-
ters of classic proposals in the literature: requirements of continuity
of the fundamental frequency contour and sentence-by-sentence pa-
rameter extraction. We have proposed to used simulated contours in
order to avoid uncontroled effects (as for instance speaker variabil-
ity) when comparing the modeling method.

The proposed training algorithm has shown the same RMSE for
different percentages of missing data in the arti cial contours used
in the experiments. In the same conditions, SEMA (Separate pa-
rameter Extraction and Modeling Approach) has shown a degrading
performance.

JEMA has shown in the experiments robustness to missing data.
As a consequence, the extracted parameters are more consistent and
have better generalization properties. In fact, we have found that not
only JEMA provides better estimation but that the use of JEMA is
most crucial than selecting the intonation representation.

The results with simulated data have been validated using real
intonation contours derived from a Spanish database.
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