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ABSTRACT

Corpus-based concatenative speech synthesis is very popular
these days due to its highly natural speech quality. The amount of
computation required in the run time, however, is often quite large
and various approaches have been proposed for reducing this run-
time computation. In this paper, we propose early stopping schemes
for Viterbi beam search in the unit selection, with which we can stop
early in the local Viterbi maximization for each unit as well as in the
exploration of candidate units for a given target. It takes advantage
of the fact that the space of the acoustic parameters of the database
units is closed and certain upper bounds of the concatenation scores
can be precomputed. The proposed method for early stopping is
admissible in that it does not change the result of the Viterbi beam
search if the upper bounds are properly computed. Experiments
show that the proposed methods of admissible stopping effectively
reduce the amount of computation required in the Viterbi beam
search while keeping its result unchanged.

Index Terms— speech synthesis, unit selection, Viterbi search

1. INTRODUCTION

Corpus-based concatenative approach to speech synthesis has been
widely explored in the research community in recent years [1, 2, 3].
In this approach, the best sequence of phone or subphone-sized syn-
thesis units are chosen from a large inventory of units to synthesize
speech from the input text through the minimization of the overall
cost. The overall cost is often modeled as the weighted sum of target
costs and concatenation (or join) costs defined on various features of
synthesis units such as spectral shape, intonation contour, and seg-
mental duration. The sequence of units to be concatenated to form
the output is usually chosen by some kind of Viterbi algorithm with
beam pruning where the quasi-optimal unit sequence is obtained by
the repetitions of local score maximization through the dynamic pro-
gramming principle. The amount of computation is often times very
large due to the large size of the unit database that can often contain
more than five hours of speech [4]. Various techniques have so far
been proposed to reduce the amount of run-time computation, such
as caching of concatenation costs [5] and segment preselection based
on usage statistics [6].

In this paper, we describe two strategies for reducing the amount
of computation in the Viterbi beam search for unit selection, by tak-
ing advantage of the prior knowledge about the closed acoustic space
of the unit database. We first describe the basic Viterbi beam search
algorithm in the next section. In the following two sections, we
present two early stopping methods, namely admissible stopping in
the local maximization and admissible stopping for the beam, in de-

tail. We report a preliminary experimental result in the succeeding
section, followed by the conclusion.

2. UNIT SELECTIONWITH VITERBI BEAM SEARCH
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Fig. 1. A schematic diagram that depicts local maximization in the
Viterbi algorithm. A gray rectangle labeled ti stands for the i-th
target. Dark circles labeled j = 1, · · · , j = Ki are candidate units
for the i-th target shown above them.

Here we describe the basic Viterbi beam search framework for
unit selection that we use for concatenative speech synthesis. Given
a sequence of target features t1, · · · , tI , we would like to find a se-
quence of waveform fragments, or units, u1, · · · , uI , that maximizes
the total score S(u1, · · · , uI). This total score S(u1, · · · , uI) is de-
fined as the sum of target scores over the unit sequence u1, · · · , uI

with the sum of concatenation scores over the same sequence added
to it,

S(u1, · · · , uI) =

IX
i=1

Lt(ui) +

IX
i=2

Lc(ui|ui−1), (1)
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Basic Viterbi beam search

(Notation)
ui(k): k-th database unit for the i-th target.
Ki: the number of database units for the i-th target.
Kθ: the beam width or the number of hypotheses retained at each
stage of the iteration.
S∗(u): the score of the hypothesis (the best partial unit sequence)
up to the unit u.
bt(u): the predecessor of the unit u determined by the local maxi-
mization.

1. Initialization
S∗(u1(k)) = Lt(u1(k)) for k = 1, · · · , K1.
Prune the initial set of hypotheses, {u1(k), · · · , u1(K1)}, prefer-
ring hypotheses with higher scores to keep at mostKθ units.

2. Iteration
Repeat the following for the target indices i = 2, · · · , I:
For all the unit indices k = 1, · · · , Ki for i-th target:

S
∗(ui(k)) = max

j
{S∗(ui−1(j))

+Lc(ui(k)|ui−1(j))} + Lt(ui(k))

bt(ui(k)) = arg max
j

{S∗(ui−1(j))

+Lc(ui(k)|ui−1(j))}

Prune the new set of hypotheses {ui(k), · · · , ui(Ki)}, and keep
at most Kθ hypotheses, preferring hypotheses with higher values
of S∗(ui(k)).

3. Termination

u
∗

I = arg max
k

S
∗(uI(k))

Starting from u∗

I , backtrace bt(u∗

I) recursively, and retrieve the
ui(k)’s for i = 1, · · · , I − 1 that lead to u∗

I .

Fig. 2. Basic Viterbi beam search for the unit selection.

where Lt(ui) is the target score for the unit ui and Lc(ui|ui−1)
is the concatenation score for having the unit ui after ui−1. Max-
imization of the total score S(u1, · · · , uI) is done efficiently by
a Viterbi algorithm. Fig. 1 is a schematic diagram that depicts a
local maximization step in the algorithm. The Viterbi algorithm
performs global optimization efficiently by repeated local optimiza-
tions. However, when the number of candidate units are very large,
the amount of computation gets too large to be practical and ap-
proximated computation using beam pruning is usually employed.
A basic algorithm of this Viterbi beam search is described in Fig. 2.

3. ADMISSIBLE STOPPING IN LOCAL MAXIMIZATION

The number of hypotheses (partial unit sequences up to the preced-
ing target position) to be compared in a local maximization of the
Viterbi beam search may be very large and it can often be in the or-
der of thousands. Therefore the situation is very different from typi-
cal local Viterbi maximizations such as seen in a left-to-right HMM
for speech recognition. We would like to avoid examining all the
hypotheses if possible, and a natural expectation is that it may be all
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Fig. 3. Cumulative scores S∗(ũi−1(j)) up to the previous tar-
get position sorted in the descending order (dark bars). We see
that the sum of the cumulative score and the concatenation score
Lc(ui(k)|ũi−1(j)) is always smaller than the maximum after a cer-
tain value of j.

right to neglect the hypotheses that are relatively very bad in score.
Now let us assume that we sort the hypotheses that survived

the beam pruning in the descending order of the cumulative score
S∗(ui(k)). The sorted list of hypotheses is denoted as [ũi(k)|k =

1, · · · , eKi], where eKi ≤ Kθ . If the number of hypotheses Ki be-
fore pruning was larger or equal to the beam widthKθ , it holds thateKi = Kθ . If performed in a straightforward way, the number of
hypotheses that participate in the local maximization for

S
∗(ui(k)) = max

j
{S∗(ũi−1(j)) + Lc(ui(k)|ũi−1(j))}

+Lt(ui(k))

in the basic Viterbi beam search depicted in Fig. 2 is eKi−1. How-
ever, as we see in Fig. 3, we can stop in the middle of maximization
for some j0 (j0 = 4 in the figure) with no approximation error, if the
cumulative score S∗(ũi−1(j0)) is bad enough such that

S
∗(ũi−1(j0)) + ubound

j,k
Lc(ui(k)|ũi−1(j))

< max
j<j0

{S∗(ũi−1(j)) + Lc(ui(k)|ũi−1(j))}, (2)

where “ubound” in the enequality (2) stands for an upper bound of
Lc(ui(k)|ũi−1(j)) for all the combinations of the values of j and
k, since it holds that S∗(ũi−1(j)) ≤ S∗(ũi−1(j0)) for all j ≥ j0
because the list of partial unit sequences up to the (i− 1)-th stage is
sorted in the descending order.

4. ADMISSIBLE STOPPING FOR THE BEAM

In the last section, we discussed an early stopping scheme in the
local maximization loop. Now we look at candidate units coming
from the unit database at the stage for the i-th target. It would be
nice if we can stop in the middle of examining each of ui(k), when
the number of candidate unitsKi is much larger than the beam width
Kθ .
Let us assume that the set of candidate units retrieved from the

unit database for the i-th target, [ui(1), · · · , ui(Ki)], is sorted in
the descending order of the target score, Lt(ui(k)). Let us also as-
sume that candidate units associated with the best past partial unit
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Fig. 4. Units with local maximization done are stored in the descend-
ing order of the cumulative score S∗(ũi(k)), which is the sum of the
previous cumulative score S∗, the concatenation score Lc, and the
target score Lt.

sequences are stored in the ordered list [ũi(1), · · · , ũi(k)] in the
descending order of new cumulative scores up to the current target
position, S∗(ũi(1)), · · · , S∗(ũi(k)), after local maximizations are
done up to k-th candidate unit. As we can see in Fig. 4, after we
have explored Kθ units in the i-th stage, we can stop if the target
score for some k0-th unit is bad enough such that

max
j

S
∗(ũi−1(j)) + ubound

j,k
Lc(ui(k)|ũi−1(j))

+Lt(ui(k0)) < S
∗(ũi(Kθ)), (3)

since Lt(ui(k)) for k > k0 are all smaller than or equal to
Lt(ui(k0)).
The modified Viterbi beam search algorithm that incorporates

the two admissible stopping schemes described in this section and
the last section is depicted in Figures 6 and 5.

5. EXPERIMENTS AND RESULTS

We implemented the two admissible stopping methods presented in
the last sections in our concatenative speech synthesis system [7, 8].
The unit database was developed using the speaker SLT of the CMU
Arctic speech databases [9]. It is spoken by a female speaker of
American English and consists of 1132 utterances. The total dura-
tion is roughly 50 minutes. The target and concatenation models
were all trained using this database. The target score for each unit
is a sum of spectral, duration, and F0 target scores coming from
the probabilistic target models described in [10, 8]. Concatenation
scores are computed using conditional Gaussian-based models de-
scribed in [7]. The spectral feature parameters used in the target and
concatenation models were both 8-dimensional feature vectors ob-
tained by applying PCA to 14 MFCC coefficients. For the modeling
of F0 and duration targets, fundamental frequencies and durations in
seconds were directly used without any transformations.
In the current experiment, we chose to use the maximum values

of concatenation scores given by conditional Gaussian-based con-
catenation models for each of the all possible phone pairs as the up-

Local maximization with admissible stopping

1. Initialization
Hypotheses (partial unit sequences) up to the (i − 1)-th stage are
listed in the descending order of cumulative score S∗(ũi−1(j)).
Set jmax = none, and scoremax = −∞.
2. Iteration
Starting from j = 1, repeat the following for j = 1, · · · , eKi−1 until
S∗(ũi−1(j)) is bad enough such that

S
∗(ũi−1(j)) + ubound

j,k
Lc(ui(k)|ũi−1(j)) < scoremax :

if S∗(ui−1(j)) + Lc(ui(k)|ũi−1(j)) > scoremax,
then scoremax = S∗(ui−1(j)) + Lc(ui(k)|ũi−1(j)),
and jmax = j.

3. Termination

S
∗(ui(k)) = scoremax + Lt(ui(k))

bt(ui(k)) = ui−1(jmax)

Fig. 5. Local maximization loop for Viterbi beam search with ad-
missible stopping.

per bounds of concatenation scores. Therefore, in our implementa-
tion with 50 phones, they are stored in a table with 50 × 50 entries.
As a preliminary experiment to know the effectiveness of the

proposed method, we ran the synthesis system and collected a few
statistics on the run-time behavior of the search module of the sys-
tem.

Table 1. Occurrences of the admissible stoppings in the Viterbi max-
imizations with various beam widths. The input text was “Yes, I’d
like to leave in the morning.”

beam # all # add # all hyps # hyps exam
width loc max stop (%) (x 1000) (x 1000) (%)

2000 37,142 36,927 (99.4) 45,659 13,051 (28.6)
500 27,817 21,970 (79.0) 13,582 6,377 (47.0)
200 20,334 11,179 (55.0) 4,067 2,599 (63.9)
50 12,061 3,570 (29.6) 603 504 (83.6)

Table 1 shows the number of all local Viterbi maximizations
that occurred in synthesizing an utterance (column 2) and the num-
ber of Viterbi maximizations that were terminated in the middle by
the proposed admissible stopping method (column 3) with its pro-
portion to the number of all Viterbi maximizations (in parentheses).
It also shows the number of all the hypotheses to be examined in
the Viterbi maximization (column 4) and the number of hypotheses
actually examined before the maximization was terminated in the
middle (column 5). From the table, we see that the almost all of
the Viterbi maximizations were terminated by admissible stopping
when the beam is the loosest (2000) and only 28.6% of all the hy-
potheses actually participated in the local maximizations. When the
beam width is very narrow (50), we still see that almost one third of
the Viterbi maximizations were admissibly stopped and the number
of hypotheses to be examined was still reduced to 83.6%.
Table 2 shows the number of all the units retrieved from the

database while synthesizing an utterance (column 2) and the number
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Viterbi beam search with admissible stoppings

(Notation)
ui(k): k-th database unit for the i-th target.
Ki: the number of candidate units from the database for the i-th tar-
get.
Kθ: the beam width or the number of hypotheses retained at each
stage of the iteration.
bt(u): the predecessor of the unit u determined by the local maxi-
mization.

1. Initialization
Retrieve the set of units for the first target from the unit database.
Sort them in the descending order of the target score, yielding a
sorted list of units [u1(1), · · · , u1(K1)].

Set S∗(u1(k)) = Lt(u1(k)) for k = 1, · · · , K1.

Prune the initial hypothesis list [u1(2), · · · , u1(K1)], preferring hy-
potheses with higher scores, to keep at mostKθ units.

2. Iteration
Repeat the following for the target indices i = 2, · · · , I:

Retrieve the set of units for the i-th target from the unit database
and sort them in the descending order of target score, yielding a
sorted list of units, [ui(1), · · · , ui(Ki)].
Starting from k = 1, repeat the local maximization procedure
shown in Fig. 5, keeping the new hypotheses in the sorted list
[ũi(1), · · · , ũi(k)], for unit indices k = 1, · · · , Ki. Stop, how-
ever, if k > Kθ holds and the inequality

max
j

S
∗(ũi−1(j)) + ubound

j,k
Lc(ui(k)|ũi−1(j))

+Lt(ui(k)) < S
∗(ũi(Kθ)).

holds.
Prune the list of new hypotheses up to i-th target,

[ũi(1), ũi(2), · · · ], to keep at mostKθ units.

3. Termination

u
∗

I = arg max
k

S
∗(ũI(k))

Starting from u∗

I , backtrace bt(u∗

I) recursively, and retrieve the
ũi(k)’s for i = 1, · · · , I that lead to u∗

I .

Fig. 6. Viterbi beam search with admissible stopping for the unit
selection.

of units actually examined before the early termination by admissi-
ble stopping for the beam (column 3) and its proportion in percent.
From the table, we see that the number of units to examine was ef-
fectively suppressed by the proposed admissible stopping method.
We also see that its effect gets greater when the beam width gets
narrower, which is expected from Fig. 4.

6. CONCLUSION

In this paper, we proposed two methods of admissible stopping for
the Viterbi beam search in the unit selection for concatenative speech
synthesis systems that reduce computation in Viterbi beam search
without changing the result. One is the admissible stopping in the

Table 2. Effects of the admissible stopping for the beamwith various
beam widths. Input text is the same as Table 1.

beam # all units # units examined (%)

2000 37,545 37,142 (98.9)
500 37,545 27,817 (74.1)
200 37,545 20,334 (54.2)
50 37,545 12,061 (32.1)

local maximization, which can terminate the maximization loop in
the middle, and the other is the admissible stopping for the beam
which makes it possible to disregard the database units with bad tar-
get scores without introducing any approximation error. We con-
firmed the effectiveness of the two admissible stopping methods by
experiment. In the current experiment, we used the maximums of
concatenation scores for each phone pair as the upper bounds of the
concatenation scores. If we know that the subset of units to be re-
trieved as candidates are more specific than monophones (phones
without conditions on surrounding context), such as some kind of
tied triphones or biphones, we may be able to prepare tighter upper
bounds that give stronger constraints.
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