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ABSTRACT

Reverberation and noise cause significant deterioration of audio qual-
ity and intelligibility to signals recorded in acoustic environments.
Noise is usually modeled as a common signal observed in the room
and independent of room acoustics. However, this simplistic model
cannot necessarily capture the effects of separate noise sources at
different locations in the room. This paper proposes a noise model
that considers distinct noise sources whose individual acoustic im-
pulse responses are separated into source-sensor specific and com-
mon acoustical resonances. Further to noise, the signal is distorted
by reverberation. Using parametric models of the system, recursive
expressions of the filtering distribution can be derived. Based on
these results, a sequential Monte Carlo approach for online derever-
beration and enhancement is proposed. Simulation results for speech
are presented to verify the effectiveness of the model and method.

Index Terms— Acoustic signal processing, speech enhance-
ment, speech dereverberation, sequential estimation, Monte Carlo

1. INTRODUCTION

Audio signals in confined spaces exhibit reverberation due to reflec-
tions off surrounding obstacles. In addition to a direct path signal,
time-shifted echoes are received, leading to spectral coloration and
reduced intelligibility. Moreover, the signal is distorted by noise,
which is usually considered to be a common signal observed within
a room. In this paper, we propose a model that considers spatially
distinct noise sources with individual acoustic impulse responses
(AIRs) exhibiting reverberation (Fig. 1). The individual channels of
the audio and noise sources are separated into source-sensor specific
and common acoustical resonances.

Multiple sensor blind dereverberation techniques exploit spatial
diversity of acoustic channels. Where sensor arrays are impractical,
single-channel blind dereverberation proves effective. However, spa-
tial diversity cannot be utilized in this inherently underdetermined
problem and prior knowledge must be incorporated.

In a model-based approach, parametric models are assumed for
both the source and the channel. Based on the state-space represen-
tation of the speech and channel model, recursive expressions can be
derived for the filtering distribution. Estimates of the source signal
and the model parameters can be obtained from the recursive rep-
resentation of the filtering distribution in a sequential manner. Se-
quential estimation facilitates online processing of the signal, which
is of particular interest for applications such as security surveillance
systems where results should become available as soon as a signal

∗ This work was funded by the Edinburgh Research Partnership in Engi-
neering and Mathematics, and partially sponsored through the German Aca-
demic Exchange Service (DAAD) PhD scholarship

noise 1

noise n

source

receiver

direct path
direct 

path

reflection

direct path

reflection

Figure 1: Distant noise source filtered through separate channels

sample is measured, i.e., where batch methods are impractical. Par-
ticle filters (or sequential Monte Carlo (SMC) methods) represent a
target distribution by a large number of random variates from a hy-
pothesis distribution. Incorporation of knowledge about the current
and past measured samples allows for correction and evolution of
the particles in time. Particle filters were shown to effectively en-
hance systems distorted by white Gaussian noise (WGN) [1] and for
reverberant all-zero channels [2]. This paper extends this work to
reverberant all-pole channels and spatially distinct noise sources.

The system model is presented in sect. §2. Sect. §3 discusses
blind signal and parameter estimation using particle filters. Experi-
mental results are presented and conclusions drawn in §4 and §5.

2. SYSTEM MODEL

2.1. Reverberation and background noise

Noise is usually modeled as an additive common signal close to the
microphone and unaffected by the room acoustics. Therefore, it can
be added at the output of the system (Fig. 2a). In a more realistic
model, spatially distinct noise sources are each observed after they
have propagated through the acoustic system, and therefore have cor-
responding but distinct AIRs. Hence, a combination of signals fil-
tered by separate channels is observed at the receiver (Fig. 2b).

While the model in Fig. 2b is idealistic, it is also overly compli-
cated, making it difficult to estimate all the relevant system param-
eters. Moreover, it can be simplified using the notion of common
acoustical poles. In [3], Haneda et al. decompose individual chan-
nels into a combination of two components: one that is dependent on
the source-sensor geometry, and one that is acoustically common to
all source-sensor arrangements. Motivated by the presence of com-
mon resonances, we propose to apply this separation to the model in
Fig. 2b to obtain a more realistic room acoustical model (Fig. 3a).

Although the general model in Fig. 3a is of great interest, the
presence of general room transfer functions (RTFs) dependent on
source-sensor geometries leads to difficulties in uniquely identifying
the source signals in the blind deconvolution problem. Identifiability
results are required before this model can be used with confidence.
Therefore, this paper uses a simplified model (Fig. 3b) to investigate
if the signal enhancement methodology proposed in the following is
appropriate for the model in Fig. 3a.
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Figure 2: Conventional noise model assuming noise at sensor vs.
proposed noise model assuming remote noise sources

2.2. Source Model

Autoregressive (AR) processes are a popular approach for modeling
the vocal tract of a speaker due to their accurate modeling of the
short-term spectrum of speech. However, stationary autoregressive
(AR) processes result in poor modeling of speech signals due to the
continually changing nature of the vocal tract. To reconcile this time-
variance, the parameter variation of the signal is modeled as a non-
stationary process. A Qth order time-varying AR (TVAR) process
can be expressed by

xt =
X
q∈Q

aq,txt−q + σetet, (1)

where et ∼ N (0, 1), x =
ˆ
x0 . . . xt

˜T
is the speech sequence

for t ∈ T samples,1 at =
ˆ
a1,t . . . aQ,t

˜T
is the set of time-

varying coefficients, and σ2
et

is the variance of the innovation.
Often, the signal is modeled as a linear time-varying process by

transforming the time-varying parameters through a set of known
basis functions to a space where they can be analyzed as a linear
time-invariant process (see e.g. [4] and references therein). However,
the accuracy of the estimate in this model is highly dependent on the
choice of basis functions [4]. An alternative approach that facilitates
the use of sequential Bayesian methods is to model the time-varying
parameters and excitation sequence as a random walk [1] specified
by the first-order Markov chain,

p (at | at−1) ∝ N
`
at

˛̨
at−1, Δa

´
IAQ(at) (2a)

p
`
φet | φet−1

´
= N

`
φet

˛̨
φet−1 , δ2

e

´
(2b)

where2 φet = ln σ2
et

, IAQ(at) denotes the indicator function for
the region of support, AQ, of the source parameters, at ∈ A. The
initial states are given by p (a0) ∝ N

`
a0

˛̨
0Q×1, Δa0

´
IAQ(a0)

and p (φe0) � N
`
φe0

˛̨
0, δ2

e0

´
. The set of Markov parameters˘

Δa, Δa0 , δ2
e , δ2

e0

¯
is assumed known and constant.

2.3. Channel Model

The acoustic wave equation indicates that room transfer functions
can be expressed as conventional pole-zero models. While these
models capture both resonances and time-delays, the inclusion of ze-
ros in the model requires the solution of a set of nonlinear equations.

1The set notation U = {1, . . . , U}, U ∈ N, is used for simplicity.
2By definition variances are positive, enforced by sampling from ln σ2

et
.
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Figure 3: Proposed model and its simplification used in this paper

All-pole models allow for linear modeling. Even though they can-
not capture time-delays or anti-resonances, all-pole models are less
sensitive to changes in the source / observer positions and are partic-
ularly useful for wave acoustics and high-sound frequencies [5].

A source signal, xt, distorted by WGN with variance σ2
nt

and

filtered by a P th order all-pole channel (Fig. 3b) results in

yt =
X
p∈P

bp,tyt−p + xt + σntnt, (3)

where nt ∼ N (0, 1), yt =
ˆ
y0 . . . yt

˜T
is the vector of obser-

vations, and the channel coefficients are bt =
ˆ
b1,t · · · bP,t

˜T
.

Generally, a scaling channel gain term should be included in the sys-
tem after the channel in Fig. 3b. However, due to scaling ambigui-
ties, the channel gain can be omitted from the estimation process.

As the channel parameters are assumed spatially invariant for a
fixed source-sensor geometry, the channel posterior and noise prior
can be expressed by the Markov chains

p
“
b | y1:t−1, θ

(−b)
0:t−1

”
� N

`
b
˛̨
μb,t−1, Pb,t−1

´
, (4a)

p
`
φnt | φnt−1

´
� N

`
φnt

˛̨
φnt−1 , δ2

n

´
(4b)

where φnt = ln σ2
nt

, θ0:t−1 �
˘
a0:t−1, b0:t−1, φe0:t−1 , φn0:t−1

¯
,

θ
(−b)
0:t−1 �

˘
a0:t−1, φe0:t−1 , φn0:t−1

¯
, and initial states p (φn0) �

N
`
φn0

˛̨
0, δ2

n0

´
. μb,0 and Pb,0 as well as

˘
δ2

n, δ2
n0

¯
are assumed

constant and known. The time-varying mean, μb,t−1, and covari-
ance, Pb,t−1, of the spatially invariant channel evolve through and
facilitate a recursive update rule on the channel parameters (sect. §3.3).

2.4. Conditionally Gaussian State Space

As the process and measurement noise are WGN, (1) and (3) can be
expressed in conditionally Gaussian state-space (CGSS) form,

xt = Atxt−1 + Dtet, (5a)

yt = Btyt−1:t−P + Ctxt + σntnt, (5b)

for t > 0 samples, where {et, nt} ∼ N (0, 1) and where

At �
»

aT
t

IQ−1 0Q−1×1

–
and Dt �

»
σet

0Q−1×1

–
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are the source transition and process noise model respectively, Bt �
bT

t contains the channel parameters, Ct �
ˆ
1 01×Q−1

˜
denotes

the observation model, and yt−1:t−P =
ˆ
yt−1 · · · yt−P

˜T

contains the P previous observations.

3. METHODOLOGY

The aim is to reconstruct the source signal, x0:t, and the set of pa-
rameters, θ0:t, given only the distorted signal, y1:t. This can be
achieved by sampling from the posterior distribution of the source
signal and unknown parameters. Since the source signal is depen-
dent on the parameters, whereas the parameters are independent of
the signal, the joint posterior can be written as

p (x0:t, θ0:t | y1:t) = p (x0:t | θ0:t, y1:t) p (θ0:t | y1:t) .

As the joint posterior often cannot be sampled from directly, esti-
mates of the source signal and model parameters can thus rather be
obtained by drawing samples from their posterior distributions sep-
arately. As the system described in sect. §2.4 is a CGSS, the like-
lihood of the clean signal, p (x0:t | θ0:t, y1:t), can be estimated by
the Kalman filter assuming known parameters [1,2] (see sect. §3.1).

3.1. Direct source signal estimation through Kalman filtering

The derivations of the Kalman filter equations for the system in
sect. §2.4 are similar to the standard Kalman filter (KF) for systems
distorted by WGN, see e.g. Ristic et al. [6]. Following this ap-
proach, the Kalman states (or source signal estimate) and their error
covariance after prediction and correction are

μt|t−1 = Atμt−1|t−1 (state prediction) (6a)

Pt|t−1 = DtD
T
t + AtPt−1|t−1A

T
t (6b)

μt|t = μt|t−1 + Kt

`
yt − yt|t−1

´
(state correction) (6c)

Pt|t = (IQ − KtCt)Pt|t−1. (6d)

The optimal Kalman gain, Kt, and the measurement residual co-
variance, σ2

zt
, are

Kt =
1

σ2
zt

Pt|t−1C
T
t , with σ2

zt
= CtPt|t−1C

T
t + σ2

nt
, (7)

with yt|t−1 = Btyt−1:t−P + Ctμt|t−1, such that

p (yt | y1:t−1, θ0:t) = N
`
yt

˛̨
yt|t−1, σ2

zt

´
. (8)

Thus, the standard KF [6] and that in eqns. (6) differ solely in the
corrected Kalman states, μt|t, and eqn. (8).

By nature of the blind deconvolution problem, the set of param-
eters is unknown and direct application of the KF leads to poor esti-
mates. Instead, the KF is incorporated within a sequential framework
where at each time step, eqns. (6) are evaluated using the current pa-
rameter estimates. The parameter estimates are corrected using the
results of eqns. (6).

3.2. Signal and parameter estimation using SMC methods

This sequence of steps for direct source signal and parameter estima-
tion can be realized in a SMC framework. As p (x0:t | θ0:t, y1:t)
can be estimated using the KF, estimation of the joint posterior re-
duces to the estimation of p (θ0:t | y1:t). For sequential importance
resampling (SIR) particle filters, the parameters are estimated by

sampling a large number of random variates (or particles) from a hy-
pothesis distribution approximating p (θ0:t | y1:t). The KF is bom-
barded with these particles. The source signal estimate hence cor-
responds to the mean of the state estimates, μt|t, over all particles.
The particles are corrected by resampling according to a function of
the observation likelihood. Resampling also ensures that only sta-
tistically significant particles are retained. The parameter estimates
correspond to the mean of the particle swarm per parameter.

In this paper, prior importance sampling is utilized, i.e., the par-
ticles are drawn from the priors in eqns. (2a), (2b) and (4b). Thus,
the importance weights reduce to eqn. (8) [1].

3.3. Channel estimation using Bayesian channel updates

Particle filters assume time-varying parameters and implicitly im-
pose a dynamic on time-invariant coefficients. Thus, particle filters
perform poorly for importance sampling of the spatially invariant
channel parameters. Instead, these are estimated using Bayesian up-
dates. Using Bayes’s theorem, the channel posterior is,

p
“
b | y1:t, θ

(−b)
0:t

”
∝ p (yt | y1:t−1, θ0:t) p

“
b | y1:t−1, θ

(−b)
0:t−1

”

where eqn. (4a) is a prior in this context. The evidence term in the
denominator is independent of the channel parameters, and thus an
omittable scaling factor. Using eqn. (8), the channel posterior is

p
“
b | y1:t, θ

(−b)
0:t

”
∝ N

`
b
˛̨
μb,t, Pb,t

´
, (9)

with covariance and mean

Pb,t =

„
P−1

b,t−1 +
1

σ2
zt

yt−1:t−P yT
t−1:t−P

«−1

(10a)

μb,t = Pb,t

“
yt

1

σ2
zt

yt−1:t−P + P−1
b,t−1μb,t−1 (10b)

− 1

σ2
zt

yt−1:t−P Ctμt|t−1

”
.

Given the posterior, the maximum a posteriori (MAP) estimate of
the channel is evaluated to be used for the KF correction (eqn. (6c))
and evaluation of the weights (eqn. (8)). Since the channel posterior
is Gaussian, its maximum is located at the mean. Thus, the MAP
estimate of the channel parameters is bMAP = μb,t.

At t + 1, the previous posterior, p
“
b | y1:t, θ

(−b)
0:t

”
, is used

as the prior to compute the current posterior, leading to a sequential
Bayesian update procedure of the channel parameters. The complete
particle filter is summarized in Algorithm 1.

for t = 1, . . . , number of samples do1
for i = 1, . . . , number of particles do2

Sample a proposal of θ
(−b)
t from (2a), (2b), (4b);3

Prediction step of KF: (6a), (6b);4

Evaluation of Kt, σ2
zt

: (7);5
Bayesian update of channel parameters: (10);6
MAP estimation of channel: bMAP = μb,t;7

Evaluation of importance weights with bMAP;8
Correction step of KF: (6c), (6d) ;9

end10
Normalization of importance weights;11
Resampling step (see, e.g., [7]);12

end13

Algorithm 1: SIR particle filter for reverberant system
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Figure 4: Accuracy of source signal estimate ( ) vs. the actual
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δ2
e0 δ2

n0 δ2
e δ2

n Δa0 Δa

0.5 0.5 5 · 10−4 5 · 10−4 0.5IQ 5 · 10−4IQ

Table 1: Markov parameters for synthesis and estimation

4. EXPERIMENTAL RESULTS

A 4th order synthetic source signal is filtered through an 8th order
channel according to Fig. 3b. The signal-based measure (SBM)3 of
the distorted signal is −6.15dB. As the results are insensitive to the
specific Markov parameters [1], these are set to the values used for
data synthesis (Table 1). These values correspond to the Markov pa-
rameters chosen in [1], selected heuristically to ensure sufficiently
broad sampling of the sampling space. The particle filter is exe-
cuted for 1000 samples and 800 particles and μb,0 = 0.5 × 1P×1,
Pb,0 = 0Q. Even though the source parameter estimates appear
inaccurate (Fig. 6b), the SBM of the enhanced signal is 4.42dB, an
improvement of 10.57dB. The accuracy of the estimated signal com-
pared to the clean source signal and the observed signal is shown in
Fig. 4b. The evolution of the poles with time of the MAP estimates
of the stationary channel parameters are shown in Fig. 5. After few
iterations, the estimates converge towards the actual channel poles.
Likewise, the channel parameters converge after ca. 200 samples to
the actual coefficients (Fig. 6a).

The particle filter is then run for 1000 particles on an utterance
of the words “the farmer’s” by a female American speaker for 9372
samples with sampling frequency 8kHz distorted by the same 8th or-
der channel as above. 15 source parameters are estimated. The SBM
of the observed signal is −1.93dB, that of the estimated source sig-
nal is 1.68dB, an improvement of 3.61dB. The accuracy of the es-
timated signal4 is shown in Fig. 4a. Although additional musical
noise is introduced, the intelligibility of the estimated source signal
is clearly improved over the distorted signal. The effect of musi-
cal noise could be reduced and intelligibility further improved by a
fixed-lag smoothing Markov chain Monte Carlo (MCMC) step [1].

3SBMdB = 10 log10

„
‖x0:t−1‖2

‖x̃0:t−1−x0:t−1‖2

«
, where x̃0:t−1 is either the

estimated or the distorted signal sequence.
4Corresponding audio files online at http://www.see.ed.ac.uk/

˜s0565868/Conferences/2008-04-ICASSP/.
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5. CONCLUSIONS
This paper proposed a model where noise as well as the audio source
are subject to reverberation by means of spatially distinct AIRs sepa-
rated into source-sensor specific and common acoustical resonances.
For enhancement, a particle filter with a Bayesian update procedure
of the channel parameters was proposed. A simplified version of the
model was applied to speech and synthetic data. Results verified the
effectiveness of the investigated model and method for speech.

Future research will investigate the applicability of the complete
proposed model in Fig. 3a for high-order channels. Further, it will be
determined if the discrepancy of the source parameter estimates can
be alleviated or if this is due to identifiability issues of the model.
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