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ABSTRACT

Artificial bandwidth extension techniques can be employed
in mobile terminals to improve the quality of the far-end
speaker’s signal at the receiver. To accomplish this, usually
statistical models are trained requiringwideband speechma-
terial from a language that is expected to be used in the
conversation. In practice however, the language of a cer-
tain phone conversation is not known to the user equipment.
Therefore we investigated the performance of an HMM-
based multilingually trained artificial bandwidth extension
on speech signals of which the languagewas unseen in train-
ing. The cross-language training and test turned out to cause
only minor degradations compared to the use of monolin-
gually trained acoustic models of the language used in test.
Our findings indicate that artificial bandwidth extension can
be efficiently trained with multilingual speech data without
significant losses in speech quality.

Index Terms— speech enhancement, artificial bandwidth
extension

1. INTRODUCTION

Artificial bandwidth extension (ABWE) in general performs
speech enhancement by upsampling of narrowband (tele-
phony) speech and estimating further frequency components
of interest. Speech enhancement systems in mobile phones
usually improve the quality of the near-end speech signal
that is perceived by the far-end conversation partner.
There are, however, obstacles to face before artificial

bandwidth extension techniques can be widely employed in
phone terminals. One is the often observed high-frequency
whistling and lisping effect of artificially bandwidth exten-
ded speech as tackled, e.g., in [1, 2]. Especially fricatives
such as /s/, /z/, /f/, and partly /S/, /Z/ are difficult to be esti-
mated based upon only a narrowband speech signal, because
a considerable portion of their energy is located in higher
frequency components. This effect is particularly observed
if the narrowband speech signal was bandlimited to an up-
per cutoff frequency of 3.4 kHz as it is the case in landline

telephony. Speaker-independent training of acoustic models
used in the ABWE also tends to increase the lisping effect.
A further obstacle is the language. The ABWE acous-

tic models and classification schemes are usually trained in
a particular language one expects the system to work with.
Even most of the recently proposed systems such as [3–5]
do not explicitly address an operation in more than one lan-
guage. For a phone application, the language however can-
not be deducted simply from the user interface language the
user has selected. A (reliable) language identification on the
speech signal of a phone conversation appears to be a some-
what too massive solution in terms of computational power
to be implemented in a phone terminal. In [6] a system has
been proposed along with test results in 3 languages, how-
ever, no test results have been included for the language the
classification scheme was optimized for.
In this paper we present an HMM-based artificial band-

width extension technique whose acoustic models can be
trained with wideband speech data of any language. For a
total of 4 European languages we performmonolingual trai-
ning and test (speaker-dependent and speaker-independent),
and we also test the use of multilingual training speech data
excluding the test language (i.e., a cross-language test).
In section 2 we present the basics of our ABWE ap-

proach. Section 3 discusses the experimental setup and our
simulation results for the crosslingual training case as com-
pared to the monolingual training case. Also examples of
spectral distortion over time are given for the simulated cases,
which allow a deeper analysis of the effects observed. Fi-
nally in section 4 conclusions are drawn.

2. THE HMM-BASED ABWE SYSTEM

The artificial bandwidth extension scheme we propose in
Fig. 1 employs an HMM-based statistical model similar to
[3]. A brief overview and some specifics of the system will
be given in the following. The narrowband (fs = 8 kHz)
speech signal sNB(n′) with sample index n′ is subject to
interpolation yielding the upsampled speech signal sNB(n)
with sample index n referring to 16 kHz sampling rate.
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Fig. 1. Block diagram of the artificial bandwidth extension.

2.1. Analysis, Extension, and Synthesis

The actual processing of the interpolated speech signal con-
sists of a mere (wideband) LP analysis filter, some residual
signal extension technique, and final LP synthesis filtering
with the very same coefficients as they were used in the
analysis filter. Due to the time-varying sets of wideband
LPC coefficients it turned out that it is highly recommended
to employ a direct form I filter implementation as opposed
to the commonly used transposed direct form II filter struc-
ture. The reason is that with the direct form I filter structure
either the input (for the analysis filter) or the output signals
(for the synthesis filter) are fed into a delay line without any
modification. Multiplication with coefficients is then per-
formed on the pure input/output signals in the delay lines.
A switch of coefficients of course has impact on the next
output sample, but is based on all but one old input/output
samples in the delay line. This smoothes the output wave-
form of the algorithm in case of coefficient transitions.
In the residual signal extension block energy is allocated

in the upper band at frequencies beyond 4 kHz. As was
shown already in [7] and recently confirmed in [8], preserv-
ing pitch harmonics is of no perceptual importance beyond 4
kHz, therefore we simply use spectral folding (setting every
other signal sample to zero). Since there are only modifica-
tions of the upper frequency band, and the LP analysis and
synthesis filters are totally inverse, this scheme is transpar-
ent towards the lower band of the resulting estimated wide-
band speech signal s̃WB(n). In the following we describe
how the wideband LPC coefficients a1, ..., a16 are estimated
from the narrowband speech signal.

2.2. Feature Extraction

Unlike the approach in [3], the feature extraction operates
directly on the narrowband speech signal sampled at 8 kHz.
It has a frame length of 15ms and a frame shift of 10ms, ac-
cordingly the wideband LPC coefficients are updated every
10 ms. The primary features are 10 autocorrelation coeffi-
cients, the zero crossing rate, gradient index, normed rela-
tive frame energy, local kurtosis, and spectral centroid, as
proposed in [9]. An LDA is employed to reduce the dimen-
sionality of the primary feature vector from 15 to 5. The
resulting feature vector x is subject to a statistical model.

2.3. Statistical Model Training

Using wideband speech trainingmaterial, a statistical model
is trained. As a first step a vector quantizer (VQ) codebook
of upper band cepstral coefficients is obtained by selective
linear prediction, computation of cepstral coefficients, and
LBG training. This VQ is then framewise applied to the
wideband training database and yields a certain state Si(l)
as classification result for frame l. In a second step, these
classification results are used to train an LDAmatrix as part
of the feature extraction. In a third step, state probabilities
P(Si) and state transition probabilities P(Si(l)|Sj(l−1))
are trained and stored for the ABWE system. Finally, using
the LDA transformed feature vectors x, the parameters of a
GMM-based observation probability density function (pdf)
p(x|Si) are derived from EM training: a scalar weighting
factor, a mean vector and a covariance matrix of every 5-
dimensional multivariate normal distribution. For each of
the 16 HMM states Si a separately trained GMM of 8 mix-
tures is used.

2.4. Estimation of LPC Coefficients

Assuming a certain state Si of the HMM model, the obser-
vation pdf p(x|Si) for the known feature vector x can be
computed from the GMMs. In order to compute state a pos-
teriori probabilities for frame l in a recursive fashion, the
trained state (transition) probabilities are combined with the
observation pdf following

P(Si(l)|X(l)) = C · p(x(l)|Si(l))·

16∑
j=1

P(Si(l)|Sj(l−1)) · P(Sj(l−1)|X(l−1)),

withX(l) = {x(l),x(l−1), . . .}. The factorC just normal-
izes the sum of the a posteriori probabilities over all states
to one. Using the vector quantizer (VQ) codebook of upper
band cepstral coefficient vectors ci as obtained during train-
ing, the a posteriori probabilities are utilized to perform an
MMSE estimation of the upper frequency band cepstral co-
efficients. By assembling the respective power spectra of
the lower and higher frequency band, the estimated wide-
band spectrum is finally converted via the Levinson-Durbin
recursion into the required LPC coefficient set ã(l).

3. EXPERIMENTAL SETUP AND RESULTS

We performed experiments in three ABWE scenarios inves-
tigating to which extent the performance appears to be data-
dependent concerning the speaker or language. The first
scenario comprises speaker-dependent (SD) training and test
data, while the remaining ones include speaker-independent
monolingual (SI) and crosslingual (CL) data, respectively.
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SD SI CL
mean LSD [dB] 2.3 2.54 2.52
5...10 dB outliers [%] 8.65 12.03 11.88
> 10 dB outliers [%] 1.0 1.43 1.44

Table 1. Total results of log-spectral distortion (LSD)
over all 4 languages: SD (speaker-dependent), SI (speaker-
independent), and CL (cross-lingual) training and test.

In all cases the required set of test signals is left out for
training purposes (leave-one-out method), so that SD ex-
cludes the current test signal, SI the current speaker, and CL
the current language. The speaker-independent experiments
shall thereby represent quite demanding but realistic ABWE
applications with unknown speakers and/or with speakers of
a language unseen in training.
We used the NTT wideband speech database with the

languagesGerman (DE), British English (UK), French (FR),
and Spanish (ES). The training data available amounts to
approximately 70s for SD, 9min for SI and 1

2h for CL ex-
periments. The number of 384 test signals is equal in all
cases. All four languages are covered, each with four male
and female speakers, respectively, and with 12 utterances
of 8s duration per speaker. Appropriate narrowband signals
are achieved by high-quality sample rate conversion with
cutoff frequency 3.8 kHz.
The wideband log-spectral distortion (LSD)

dLSD =

√√√√2
(

10
ln10

)2
·

64∑
d=1

(cWB,d − c̃WB,d)2

serves as our performance evaluation measure with cWB,d

and c̃WB,d being the cepstral coefficients of the original
wideband speech signal and of the bandwidth-extended sig-
nal, respectively. Besides the mean LSD dLSD, we com-
puted the percentage of LSD outliers in the range of 5 to
10 dB (dLSD,5−10) and beyond 10 dB (dLSD,>10). These
ranges were found to reasonably document the speech qual-
ity in the context of artificial bandwidth extension from 8 to
16 kHz sampled speech.
Table 1 provides the total LSD results of the SD, SI and

CL experiments. It turns out that the speaker-dependent
ABWE performance is significantly better than the speaker-
independent one. However, it should be noted that this ad-
vantage of SD training versus SI training is not consistent
over all speakers: There are speakers gaining a lot from
SD training, while others perform just as good as in the SI
case. As somewhat surprising we found that the crosslin-
gual (CL) performance of the ABWE scheme is not worse
than the monolingual one (SI). Taking these results it can be
concluded for speaker-independent ABWE scenarios that
— at least for languages related to each other — crosslin-
gual training and test does not cause a loss in speech quality.
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Fig. 2. Figures from top to bottom: Results for (a) mean
log-spectral distortion dLSD [dB], (b) LSD outliers in the
5...10 dB range [%], (c) LSD outliers beyond 10 dB [%].

In general, these results are confirmed by Fig. 2 which
displays the LSD results for each single language. As can
be seen however, there are quite significant differences be-
tween the languages. In the SI test condition the LSD per-
formance of German and English bandwidth-extended sig-
nals is somewhat worse than that of French or Spanish ones.
German ABWE shows the worst mean LSD, while UK En-
glish ABWE obviously generates more LSD outliers be-
yond 10 dB, which are usually the really perceivable ones.
French figures are better than both English and German, and
Spanish ABWE performance is best. This result is interest-
ing in so far, as it resembles automatic speech recognition
performance reported in these languages.
The bottom diagram of Fig. 2 shows some further inter-

esting details: While the SI and the CL performance of Ger-
man and Spanish are quite the same, French is worse when
trained in a crosslingual fashion, while English is even bet-
ter. An explanation could be that English takes profit from
being related to the other three European languages and in
that sense from the larger amount of fitting training data in
the CL case. In contrary, a French ABWE trained by En-
glish, German, and Spanish produces in CL simulations a
bit more sounds that may not really be part of the French
language than in the SI case. This impression is further sup-
ported from informative auditive listening tests.
In its upper four plots Fig. 3 depicts the spectrograms of

an original wideband speech signal and all corresponding
bandwidth-extended versions (SD, SI and CL). The signal
displayed is the German utterance “Einen Apfel”. Obvi-
ously most times there is quite a high similarity between
the original and the speaker-dependent bandwidth-extended
signal. Some differences become visible concerning the
speaker-independent spectrograms. However, among the
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Fig. 3. Figures from top to bottom: Spectrograms for
(a) 16 kHz original speech, (b) bandwidth-extended speech
(SD) (c) bandwidth-extended speech (SI), (d) bandwidth-
extended speech (CL). The utterance spoken was “Einen
Apfel”. Bottom plot: (e) Log-spectral distortion [dB] over
time for the narrowband signal (dotted curve), and the artifi-
cially bandwidth-extended signals with SI technique (solid),
CL (circle markers), and SD (dashed).

speaker-independent schemes, the crosslingual results again
keep up with the monolingual ones. This is confirmed by
the corresponding LSD curves over time as drawn in the
bottom plot of Fig. 3. While the SD technique in most
cases represents a lower bound, the SI scheme several times
yields a higher log-spectral distortion than the CL case. As
expected the SD and SI techniques differ considerably in
quality around time 0.6 s during the rather critical phonems
/p/ (plosive) and /f/ (fricative) in the word “Apfel”. Even
here the CL results perform slightly better than the SI ones.
The additional dotted curve of the narrowband LSD (NB)
demonstrates that the ABWE significantly improves the band-
limited speech quality in terms of log-spectral distortion.

4. CONCLUSIONS

In this paper we have addressed the problem of enhanc-
ing speech quality by artificial bandwidth extension with
speaker-independent monolingual and crosslingual training
and test data. An HMM-based technique has been presented
that was shown to provide comparable performance in both
cases. A significant improvement versus the narrowband
speech quality is reported by evaluation of log-spectral dis-
tances. Language-dependent characteristics of the ABWE
performance were found providing a performance ranking
as known from ASR techniques. Our findings indicate that
artificial bandwidth extension can be efficiently trained and
employed in a crosslanguage scenario which makes it useful
for real-world telephony applications, where no knowledge
about the phone conversation’s language is available.
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