
DISTANT-TALKING ROBUST SPEECH RECOGNITION USING LATE REFLECTION
COMPONENTS OF ROOM IMPULSE RESPONSE

Randy Gomez, Jani Even, Hiroshi Saruwatari, Kiyohiro Shikano

Graduate School of Information Science
Nara Institute of Science and Technology , JAPAN

E-mail: {randy-g,even,sawatari,shikano}@is.naist.jp

ABSTRACT
We propose a robust and fast dereverberation technique for
real-time speech recognition application. First, we effectively
identify the late re ection components of the room impulse
response. We use this information together with the con-
cept of Spectral Subtraction (SS) to remove the late re ection
components of the reverberant signal. In the absence of the
clean speech in actual scenario, approximation is carried out
in estimating the late re ection where the estimation error is
corrected through multi-band SS. The multi-band coef cients
are optimized during of ine training and used in the actual
online dereverberation. The proposed method performs bet-
ter and faster than the relevant approach using Multi-LPC and
reverberant matched model. Moreover the proposed method
is robust to speaker and microphone locations.

Index Terms— Robustness, Speech Recognition, Dere-
verberation, Spectral Subtraction

1. INTRODUCTION

Reverberation degrades signi cantly the performance of distant-
talking speech recognition applications. Thus, it is important
to suppress the reverberation effects to minimize model mis-
match prior to input to the recognizer. Technique such as in-
verse ltering is effective but take much computation time and
precludes real-time application. In this research, we focus on
a single channel real-time dereverberation framework which
can be easily extended to multiple channels.
A novel approach based on this framework is proposed in

[1]. This approach employs a numerical criterion based on
minimum squared error through multi-step Linear Prediction
Coef cients (LPC) to effectively estimate the late re ection
and makes use of single-band SS to remove it from the ob-
served signal. Although [1] works well in estimating the late
re ection, this approach requires the complete reverberant ut-
terance for processing since multi-step LPC’s performance
is directly proportional to the observed data. Thus, realtime
speech recognition is dif cult to realize.
In our proposed method, we extended and modi ed [1],

resulting to a real-time dereverberation in realistic reverber-

ant conditions. Instead of using multi-LPC, we devise an
approach to effectively estimate the late re ection using the
measured impulse response and suppress its effect through
multi-band SS. Unlike in [1], the proposed method does not
need to wait for the whole reverberant utterance to start pro-
cessing thus, real-time implementation is possible.

2. SPECTRAL SUBTRACTION
A reverberant speech signal contains both the effects of the
early and late re ections (when referring to early re ection
we include by de nition the direct signal). Although there
exists a strong correlation due to articulatory constraints be-
tween the speech and the effects of the reverberant environ-
ment condition (i.e. early, and late re ections) this strong cor-
relation is lost due to articulatory movements [2]. Thus, we
can write

x(n) = xE(n) + xL(n), (1)

where xE(n), xL(n) are the uncorrelated early and late re-
ection components of the reverberant signal x(n). Denote

s(n) as clean speech, and suppose that given room impulse
h(n) = [hEhL] where its early coef cients hE and late coef-
cients hL are identi ed in advance, Equation 1 becomes

x(n) = s(n) ∗ hE + s ∗ hL. (2)

Since xE(n),xL(n) are uncorrelated to some constraint [2],
we can use SS [3] to remove xL(n). The target signal xE(n)
becomes

xE(n) = x(n)− xL(n). (3)

The reasons of removing xL(n) are the following:

(1) The late re ection has lower energy compared to the
early re ections.

(2) The late re ection tends to be static over time and not so
sensitive with microphone-to-speaker distance as op-
posed to the early re ection.

(3) The late re ection falls outside the framework in which
the 3-state HMM is designed to handle.
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Fig. 1. Ideal dereverberation where clean speech signal is
known
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Fig. 2. Practical implementation of the ideal fast dereverber-
ation.

Moreover, the early reverberation effects in target signal xE(n)
can be handled by the 3-state HMM architecture through Cep-
stral Mean Normalization and adaptation techniques [4].

3. PROPOSED METHOD

Based on the SS concept given in Equation 3, a fast and sim-
ple dereverberation approach can be constructed as depicted
in Figure 1. This gure shows that late reverberant compo-
nents can be easily removed if late re ection impulse response
hL and clean speech s(n) are given in order to estimate for
xL(n). This approach is much faster and accurate than that of
[1] since we use the exact impulse response boundary and not
rely on multi-LPC which takes time to estimate for xL(n).
Figure 1 is ideal in a sense that hL and s(n) are not avail-
able. In Figure 2, we show our proposed method which is
an alternative implementation to that of the ideal case shown
in Figure 1. It is possible to measure the room impulse re-
sponse h(n) and from that we can experimentally identify hL

which will be explained in Section 3.1. Likewise, we can as-
sume that by using the actual reverberant signal x(n) instead
of s(n) (note that s(n) is not available) we can arrive to a
crude estimate x̂L(n) instead of the exact xL(n). Although
this would result to signi cant estimation error, we can cor-
rect this through multi-band SS where multi-band coef cients
δδδ = {δ1, . . . , δK} are trained of ine to minimize the error be-
tween x̂L(n) and xL(n) as described in Section 3.3.

3.1. Identifying Impulse Response Boundary hL

Suppose that we are able to measure the room impulse re-
sponse h(n) (see Section 4.1), we need to effectively nd the
boundary for hL. In doing so, we varied the length of the
impulse response in generating reverberant test data sets and
perform recognition experiments using a clean model. The
result of the experiment is shown in Figure 3, where the hor-
izontal axis is the length of the impulse response and the ver-
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Fig. 3. Late Re ection Boundary Identi cation.
tical axis shows the recognition performance. It is obvious in
this gure that the steep decrease in the performance starts at
70 ms which suggests the beginning of the effect of the late
re ection xL(n) . The steep decrease is attributed to the fact
that the recognizer cannot deal with reverberation that falls
outside the 3-state HMM framework. Thus this part is due
to the late re ection hL. Moreover, this gure shows that the
recognizer is robust to the effects of the early part hE which
causes the early re ections xE(n).
3.2. Estimating x̂L(n) instead of xL(n)

Since it is not feasible to estimate xL(n) because s(n) is not
available in the actual scenario, we made a crude assumption
that we can instead estimate x̂L(n) = x(n)∗hL using the ob-
served reverberant signal x(n) as shown in Figure 2. This as-
sumption however, results to signi cant estimation error and
would render the conventional single band SS to be inoper-
ative since SS needs a good estimate of xL(n). To correct
this error, we employ multi-band SS similar to that in [5]. We
introduced an of ine training scheme in computing the multi-
band coef cients that minimize the error between xL(n) and
the crude estimate x̂L(n) which is discussed in Section 3.3.

3.3. Correcting Estimation Error Through Training ofMulti-
band Coef cients for SS

Although s(n) is not available in the actual scenario, we can
have access of this in the training database. Thus, we optimize
the values of the multi-band coef cients of ine in a form of
training to minimize the error between xL(n) and x̂L(n). Fig-
ure 4 shows this process. For each selected clean signal s(n)
in the database, the actual late re ection is xL(n) = hL∗s(n)
and the crude estimate late re ection x̂L(n) = hL ∗ h ∗ s(n)
are computed using the late part of the impulse response and
the clean speech in the database. Next, the power spectral
densities (PSD) XL(f) and X̂L(f) of both signals are esti-
mated using Welch’s method. The window type, overlap and
length of the frame are the same as the one used in the multi-
band SS. Figure 5 shows an example of PSDs of both signals.
For a given set of bandsBBB = {B1, . . . , BK}, the coef cients
δδδ = {δ1, . . . , δK} are determined by minimizing the squared
error in each band k

Ek =
∑

f∈Bk

|XL(f)− δkX̂L(f)|2. (4)
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Fig. 4. Obtaining the values of the multi-band coef cients
of ine using the clean utterances.
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Fig. 5. Power spectral densities of the real late reverberant
component XL(f) and estimated late reverberant component
X̂L(f).

Thus, in the actual multiband SS online using the optimized
δδδ, the target signal XE(f) in frequency domain is given as,

|X̂E(f, τ)| =

⎧⎪⎪⎨
⎪⎪⎩

|X(f, τ)|γ − δk|X̂L(f, τ)|γ

if |X(f, τ)|γ − δk|X̂L(f, τ)|γ > 0

β|X̂L(f, τ)|γ

else

(5)

for f ∈ Bk with β the ooring coef cient and γ the power
exponent as in conventional SS. We have tried different num-
ber of bands and nally choose the one used by the recognizer
in obtaining the mel scale (see Section 4 Table 1). Moreover,
the resulting δδδ coef cients from training which is used in the
actual multi-band SS are {3.430, 1.913, 1.647, 0.780, 0.664,
2.743, 2.655, 1.995, 1.699, 1.232, 1.794, 1.324} .

4. EXPERIMENTAL RESULTS
4.1. Experimental Conditions

We use the Time Stretched Pulse (TSP) method [6] to obtain
the measurement of the actual room impulse response h(n)
and to simulate reverberant utterances for both the training
and test data in the same manner as [1]. In this experiment we
use a single channel directional microphone. The room set-up
is shown in Figure 6 with source/speaker locations of 0.5m,
1.0m, 1.5m, and 2.0m respectively. Microphones are located
with positions L2, L1, C, R2, and R1 respectively. Reverbera-
tion time of the measured impulse response is around 400ms.
Reverberant signals are obtained using 6000-tap lter.
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Fig. 6. Microphone-speaker set-up in acquiring room impulse
response using TSP

Table 1. System speci cations
Sampling frequency 16 kHz
Frame length 25 ms
Frame period 10 ms
Pre-emphasis 1− 0.97z−1

Feature vectors 12-order MFCC,
12-order ΔMFCCs
1-order ΔE

HMM PTM , 2000 states
Training data Adult and Senior by JNAS
Test data Adult and Senior by JNAS

JULIUS [7] is used as a recognizer using Phonetically
TiedMixture (PTM) [8] model with 20K-word Japanese news-
paper dictation task from JNAS [9] with a combined 561 speak-
ers (male and female). The open test set constitutes 44 (male
and female) speakers with a combined 200 utterances. Sum-
mary of the conditions used in recognition is given in Table
1.

4.2. Recognition Performance

In Figure 7 we show the basic recognition results at each
speaker-to-center microphone distances 0.5m, 1.0m, 1.5m,
and 2.0m. At each of this distances we also consider the 5
microphone positions R2, R1, C, L1, and L2 (refer to Figure
6 for room con guration). Figure 7 shows that the proposed
method (A) outperforms the multi-LPC approach (B) in all
cases. Moreover, the recognition performance improvement
in using the proposed method is obvious as compared to the
(C) and (D).
4.3. Robustness toMicrophone Positions and Speaker Dis-
tances

A variation in speaker location would imply a variation of δδδ.
The result shown in Figure 8 shows that the proposed method
is independent of δδδ, thus robust to variation in location. When
using only one set of δδδ measured at the farthest microphone
distance at 2.0m (we refer to this as robust δδδ), the recognition
performance does not vary much as compared to using several

4583



50

55

60

65

70

75

80

L2 L1 C R1 R2
30

40

50

60

70

80

20

30

40

50

60

70

80

0

15

30

45

60

75

L2 L1 C R1 R2 L2 L1 C R1 R2 L2 L1 C R1 R2

Microphone Locations :     L2 / R2   ( Left / Right  microphone 2.0m ) C   (Center  microphone)L1 / R1  ( Left  / Right  microphone 1.0m )

W
or

d 
A

cc
ur

ac
y 

( 
%

 )

Speaker-to-center 
microphone dist = 0.5m

Speaker-to-center 
microphone dist = 1.0m

Speaker-to-center 
microphone dist = 1.5m

Speaker-to-center 
microphone dist = 2.0m

Test    :     Reverberated and pocessed by proposed method
Model :    Reverberated and processed by proposed method
Test    :   Reverberated and processed by Multi-LPC method
Model :   Reverberated and processed by Multi-LPC method

Test    : Reverberated but no processing
Model : Reverberated but no processing
Test    : Reverberated but no processing
Model : Not reverberated and no processing

A 

B 
C 
D 

50

55

60

65

70

75

80

L2 L1 C R1 R2
30

40

50

60

70

80

20

30

40

50

60

70

80

0

15

30

45

60

75

L2 L1 C R1 R2 L2 L1 C R1 R2 L2 L1 C R1 R2

Microphone Locations :     L2 / R2   ( Left / Right  microphone 2.0m ) C   (Center  microphone)L1 / R1  ( Left  / Right  microphone 1.0m )

W
or

d 
A

cc
ur

ac
y 

( 
%

 )

Speaker-to-center 
microphone dist = 0.5m

Speaker-to-center 
microphone dist = 1.0m

Speaker-to-center 
microphone dist = 1.5m

Speaker-to-center 
microphone dist = 2.0m

Test    :     Reverberated and pocessed by proposed method
Model :    Reverberated and processed by proposed method
Test    :   Reverberated and processed by Multi-LPC method
Model :   Reverberated and processed by Multi-LPC method

Test    : Reverberated but no processing
Model : Reverberated but no processing
Test    : Reverberated but no processing
Model : Not reverberated and no processing

A 

B 
C 
D 

Fig. 7. Basic Recognition Performance.
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Fig. 8. Robustness of the Proposed Method.

matched δδδ. This points to the fact that xL(n) does not vary
much as well.

5. CONCLUSION

Although the multi-LPC [1] is novel in a sense that it can
adaptively estimate xL(n), real-time dereverberation for real-
time speech recognition is not feasible. It is true that the pro-
posed method requires a measurement of room impulse re-
sponse in advance, but this trade-off is negligible since we
are able to execute a fast and real-time dereverberation im-
plementation which is not achieved in [1]. Moreover, since
xL(n) does not vary so much with distance (as shown in Fig-
ure 8), we only need to measure a single impulse response
and calculate a single set of δδδ. Currently we are expanding
this research to using microphone arrays.
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