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ABSTRACT

This paper proposes minimum mean squared error (MMSE)
speech signal estimation in a reverberant space using dif-
ferent optimal estimators in the low and high frequency
ranges. At low frequencies, an MMSE spectral amplitude
estimator divided by the spectral amplitude of a represen-
tative impulse response produces optimal performance. In
the high frequency range, the MMSE estimator is com-
puted based on its suf cient statistic: the maximum like-
lihood (ML) estimate. Inference is factored using a two-
step algorithm: the maximum likelihood value of the source
spectrum is rst estimated using expectation-maximization
(EM) under the assumption of the hidden room response
with complex Gaussian pdf, then the MMSE source spec-
tral estimate is computed.

Index Terms— Signal enhancement, channel inver-
sion, room response estimation, statistical room response
modeling.

1. INTRODUCTION

One of the main problems we have to solve, in order to
achieve speech recognition in acoustic spaces such as class-
rooms and moving cars, is noise. Noise in acoustic spaces
is mostly composed of two components; “additive back-
ground noise”, and “convolutive noise” which is caused
by the room impulse response (RIR). Additive noise may
be removed by optimal ltering [1, 2], because it can be
easily modelled as an independent Gaussian noise. Early
echoes (short-lag convolutive noise) may be similarly re-
moved by optimal ltering of the log short-time Fourier
transform (STFT) or cepstrum, but long-lag convolutive
noise (reverberation) is seldom addressed.

From the classical room acoustic theory for a closed
space, rst we would like to introduce how we can model
the room response from one point to the other in a closed

space, for example, like when a driver talks to the hands
free microphone for conversation with his family in a car.
This modelling will be done in the low frequency range
and in the high frequency range separately. The crossover
frequency, “Schroeder’s frequency” [3], speci es the fre-
quency above which the acoustic modes overlap too much,
in frequency, to be discretely modeled:
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�
6

A
≈ 2000

�
T

V
(1)

where c is the speed of the sound, A is the absorbtion area
of the room (m2), Sabine’s reverberation time T=0.163V/A(sec),
and V (m3) is the volume of the space. In actual com-
putation, we use the measured reverberation time. From
this approach, a probability density function (pdf) of the
room response above the crossover frequency shall be in-
troduced, which can be thought of as a statistical model
of the room response. Based on this model, we derive a
novel EM algorithm to complete the MMSE-optimal es-
timates of the speech spectrum produced in a space with
convolutive and additive noise.

2. BACKGROUND: MODELLING OF THE ROOM
RESPONSE

Two different models of the room response should be in-
troduced, because the statistical characteristics of the room
response in the high frequency range are different from
the statistical characteristics of the room response in the
low frequency range. In the high frequency range, the
room response can be assumed to have a Gaussian pdf
due to mode overlapping; by the central limit theorem, the
sum of modal responses with independent uniformly dis-
tributed phase approaches a Gaussian pdf [3]. Note that
the Gaussian-like histogram differs little depending on the
measurement point; a histogram computed at a different
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measurement point was nearly identical. In the low fre-
quency range, modes are discrete and easily measurable,
therefore we model the low frequency range using a de-
terministic frequency response. To get the crossover fre-
quency, we use Schroeder’s frequency formula ( 1). For
example, a typical automobile space with volume of 5 m3

and reverberation time of 0.2s will have a crossover fre-
quency of around 400 Hz.

3. OPTIMAL ESTIMATORS: DETERMINISTIC
ROOM RESPONSE

This section considers the problem of MMSE spectral am-
plitude estimation (MMSE-SA, [1]) and MMSE log am-
plitude estimation (MMSE-LSA, [2]) assuming a deter-
ministic, measured room response. Assume a signal Y
measured based on source X , room response H , and noise
signal D:

Y = HX + D (2)

Below the Schroeder frequency, we assume that H is de-
terministic, and that Hs within a measurement region of
radius |�r| are similar enough [4, 5], so that over the region
we assume to be able to replace Hs as a representative
Hrep:

Y (�r) = a|H|repejα + N, |�r| � wavelength (3)

where a = |X| is a Rayleigh random variable with para-
meter λX , and uniformly distributed α is the sum of phase
of X and H:

p(a, α) =
a

πλX
exp(− a2

λX
) (4)

The measurement Y is complex Gaussian with mean
a|Hrep|ejα:

p (Y |a, α, |H|rep ) =
1

πλD
exp(− 1

λD

���Y − a|Hrep|ejα
���2)

(5)
Therefore the MMSE estimator of |X| is

|X̂|MMSE−SA,det

= E[|X||Y, |H|rep]

= 1
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|HX̂|EM84

(6)
where |X̂|EM84 is the Ephraim-Malah MMSE-SA esti-
mator [1]. Note that the phase response α, which is the

sum of the channel and source phase, can be marginal-
ized, therefore we can have the intuitive simple way of
getting MMSE estimation as in (6). Similarly MMSE-
LSA estimator can be obtained as

ln |X̂|MMSE−LSA,det = [ln |X| |Y, |H|rep ] (7)

= ln |HX̂|EM85 − ln |H|rep

where |X̂EM85| is the Ephraim-Malah MMSE-LSA esti-
mator [2].

4. OPTIMAL ESTIMATORS: PROBABILISTIC
ROOM RESPONSE

Above the Schroeder frequency, we can assume that H is
a random variable with Gaussian pdf. In this case, optimal
estimators should be based on the pdf of H instead of a
deterministic representative Hrep. Because many modes
overlap at each frequency, by the central limit theorem,
we can assume that H has a complex Gaussian pdf, and
therefore |H| is a Rayleigh random variable. The MMSE
estimator is

|X̂|MMSE−SA,prob

= E [|X| |Y ] = E [E [|X| |Y, H ]]

=

� ∞

0

|X̂|MMSE−SA,detp(|H|)d|H| (8)

Because we have been unable to analytically integrate the
equation above, a novel ML estimator followed by the
conventional optimal lter is proposed.

4.1. ML Estimator as a Suf cient Statistic

Balan and Rosca [6] demonstrated that the ML estimate
of X given H , XML|H , is a suf cient statistic for optimal
estimation of any function f(X):

E [f(X) |Y, H ] = E
�
f(X)

��XML|H
�

(9)

where
XML|H = (H∗H)−1H∗Y (10)

In our formulation, H is a random variable, therefore XML|H
is also a random variable. We propose a two-step proce-
dure in which X , and H are jointly estimated according
to

(XML, HML) = arg max p(Y |X, H, λD) (11)

and then MMSE estimates of functions f(X) are com-
puted. Note that by including λD,ML in (11) the noise
variance λD is also able to be jointly estimated, but in
this paper we simply assume that we can obtain λD with-
out this ML estimation as in the previous methods [1, 2].
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4.2. EM algorithm

The expectation-maximization algorithm (EM) is an iter-
ative method to get the ML estimates of parameters [7].
Hidden parameters may be de ned to include the expec-
tation and variance of H. De ne (Y,H) to have pdf

p(Y, H|X, λD) = p(Y |H, X, λD)p(H). (12)

Assume that the noise D has a zero mean Gaussian pdf
of variance λD , and that H is a zero mean Gaussian with
variance λH . The objective function has the form below.

Q(X, X(i−1)) = E
�
ln p(Y, H|X, λD)

���Y, X(i−1)
�

(13)
From Eq. (12),

Q(X, X(i−1)) = E
�
ln p(Y |H, X, λD)

���Y, X(i−1)
�

(14)
because p(H) has nothing to do with X . The EM algo-
rithm has two steps: “Expectation” and “Maximization.”

<EXPECTATION STEP>

E[H∗|Y, X(i−1)]

= E[H∗] +
Cov(H∗, Y ∗|X(i−1))

Cov(Y ∗|X(i−1))
(Y ∗ − E[Y ∗])

=
λHX(i−1)Y ∗

|X(i−1)|2λH + λD
(15)

where this is obtained from Y = HXi−1 + Di−1.

Cov[H∗|Y ∗, X(i−1)] =
λHλD

|X(i−1)|2λH + λD
(16)

and

E[H∗H|Y, X(i−1)] = Cov[H∗|Y ∗, X(i−1)]

+ |E[H∗|Y ∗, X(i−1)]|2(17)

<MAXIMIZATION STEP>

Xi =
E[H∗|Y ∗, X(i−1)]

E[H∗H|Y ∗, X(i−1)]
Y (18)

where this is obtained from ∂Q
∂X

= 0, and note that X is
complex. Update formulas for λD,ML may be similarly
derived.

Multiple measurements around a target position may
be modeled as independent and identically distributed. In

this case, the Q function is:

Q(X, X(i−1)) =

N�
j=1

E
�
ln p(Yj , Hj |X, λD)

���Yj , X
(i−1)

�
,

(19)
and the maximization step for Xi is (20).

Xi =

�N
j=1 E[H∗

j |Y ∗j , X(i−1)]Yj�N
j=1 E[H∗

j Hj |Y ∗j , X(i−1)]
(20)

5. EXPERIMENTAL EVALUATION

In this experimental evaluation, we focus on the newly
derived EM algorithm for the suf cient statistic XML,
because theoretically derived optimal estimator for deter-
ministic room response has already been evaluated in the
previous researches [4, 5]. However, note that the theo-
retical consideration given in this paper is missing there.

5.1. Experimental setup

To verify the proposed EM algorithm, 50 room impulse
responses (RIRs) are simulated with randomly chosen po-
sition of the source and 50 receivers using conventionally
used room simulation method “image-method” [8, 9]. A
shoebox type of acoustic space has been used, the dimen-
sion of which is 6.25 m × 3.75 m × 2.5 m and volume
of which is 58.59 m3. The speed of sound, the average
absorption coef cient and the reverberation time are set
to 343 m/s, 0.45, and 0.25, respectively.

Source was one copy of the speech waveform “three,”
extracted from TIDigits [10]. Fig. 1(a) shows the source
spectrum (an utterance of the word “three”) only contam-
inated by additive noise, where signal to noise ratio was
about 12 dB. 50 measurements have been simulated not
only by convoluting the source signal with the 50 RIRs
but also by adding noise. Fig 1(b) shows one of the mea-
sured responses.

5.2. Results

At each measurement location, the suf cient statistic XML

can be estimated using EM. In this experiment, we use
multiple measurements to obtain XML more accurately.
Fig. 1(c) shows the source spectrum |X̂|ML estimated
using the proposed EM-based algorithm. Above about
200Hz, the estimated source spectrum above the noise
oor is almost same as the source spectrum above the

noise oor. In other words, we could successfully elim-
inate the effect of the room responses in the maximum
likelihood sense, and this result is the suf cient statistic
to the classical MMSE speech enhancement algorithms.
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Fig. 1. EM-ML estimate result (a) Source spectrum (an
utterance of the word “three”) only contaminated by ad-
ditive noise: SNR is about 12 dB, (b) One of the measure-
ments: Source spectrum contaminated by RIR as well as
additive noise, (c) EM ML estimated spectrum: suf cient
statistic XML

Below 200Hz, the estimation starts to break down, appar-
ently because the room response is not a Gaussian ran-
dom variable at lower frequencies. Although the range
between 100 - 200Hz is above the Schroeder frequency, it
seems that the modes of the room response do not overlap
thickly enough, in this frequency range, for the response
to approach a Gaussian distribution.

6. CONCLUSION

In this paper MMSE optimal estimators of a signal which
has been contaminated by convolutive noise as well as ad-
ditive noise are de ned. In the low frequency range (be-
low the Schroeder frequency), the room response is esti-
mated using a single representative measured response. In
the high frequency range, the MMSE spectral estimator
is expressed as the conditional expectation of |X| given
knowledge of the maximum likelihood estimate, XML|H .
Rather then integrating over the pdf of random variable
XML|H , we approximate p(XML|H) using a point dis-
tribution centered at the joint maximum likelihood esti-
mates XML and HML; these joint maximum likelihood
estimates are computed using EM.
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