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ABSTRACT

This paper reports comparative evaluations of the method we pre-
viously proposed of estimating fundamental frequency (F0) based
on complex cepstrum analysis with nine typical methods over huge
speech-sound datasets in both artificial and realistic reverberant en-
vironments (in room acoustics). They involve several classic algo-
rithms (Cepstrum, AMDF, LPC, and modified autocorrelation) and
a few modern algorithms (TEMPO, YIN, and PHIA). The compar-
ative results revealed that the percentage correct rates of the esti-
mated F0s using them were drastically reduced as the reverberation
time increased while F0 estimated with the proposed method was
completely robust and accurate. They also demonstrated that ho-
momorphic analysis and the concept of a source-filter model were
relatively effective for estimating F0. The results also demonstrated
that it was much better than the previously reported methods in terms
of robustness and providing accurate F0 estimates in both artificial
and realistic reverberant environments.

Index Terms— F0 estimation, reverberant speech, complex
cepstrum analysis, MTF concept, source-filter model

1. INTRODUCTION

The fundamental frequency (F0) of speech can be utilized as a sig-
nificant feature to represent the source information (glottal wave-
form) of speech sound in various speech-signal processes. These
are in speech analysis/synthesis systems, automatic speech recog-
nition (ASR) systems, and speech emphasis methods. Therefore, a
particularly important issue in these applications is to robustly and
accurately estimate the F0 of target speech in real environments.

Many studies on estimating the F0 of target speech have been
done in the literature on speech-signal processing, and many meth-
ods have been proposed [1] over the last half century. The tradi-
tional methods of estimation can be divided into processing in the
time and frequency domains, or both. Most of these have made use
of the periodic features of speech in the time domain (e.g., autocor-
relation) or harmonic features in the frequency domain (e.g., comb
filtering) [1]. However, the problem of estimating the F0 still seems
to be unsatisfactorily resolved because three main issues remain, i.e.,
(i) observability: the observed speech is an emitted sound passing
through the mouth/nose so that it is impossible to directly observe
glottal vibrations from it, (ii) flexibility and irregularity: glottal vi-
brations are not complete periodic signals and the range of variations
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in the periods is relatively wide, and (iii) robustness: the observed
speech signals are affected by noise and reverberation so that signif-
icant features for estimating F0 are also smeared.

Most studies have focused on the first two issues so that they
have implicitly assumed all speech signals are observed in clean
environments or all observations are only noiseless speech sounds.
Various methods of estimating F0 have been proposed under this as-
sumption to solve the first issue by suppressing the effects of filter
characteristics, based on the source-filter model, from the observed
speech sounds (e.g., homomorphic-analysis [2] and LPC methods
[1]). A few approaches to precisely estimate the F0 of target noise-
less speech have been established (e.g., TEMPO [3] and YIN [4])
by comparing electro-glottal-graph (EGG) information. It has been
reported that both methods can be used to estimate the F0 of tar-
get noiseless speech extremely accurately so that the first two issues
seem to be resolved. However, it has not yet been clarified whether
these methods can precisely estimate F0 in real environments.

It is generally known that the method of estimating F0 using
periodic and/or harmonic features is relatively robust against back-
ground noise [1, 5, 6]. Moreover, it has been reported that the instan-
taneous amplitude (IA) of speech has fine harmonic features that are
robust against background noise. The instantaneous frequency (IF)
of speech has also been used to accurately estimate F0s but their sta-
bility as used in TEMPO is sensitive to noise. More robust methods
using IF have been proposed by using bandwidth equations with har-
monicity [5] or using periodicity and harmonicity [6] related IA and
IF. It has been reported that these are more robust than TEMPO and
can precisely estimate the F0 in noisy environments.

All these methods have focused on noiseless to noisy conditions
to estimate sufficiently accurate F0s of target speech. Thus, methods
using IA and IF or those with robust features against noise such as
periodicity and harmonicity have been regarded as accurately being
able to estimate F0s from noisy speech. The last issue seems to be
have been solved at this time; however, there have been no studies
on robustness in realistic reverberant environments. In our study on
simulations [7], we found that no typical methods worked as well in
artificial reverberant environments and their percentage correct rates
for F0s were reduced drastically as reverberation time increased. We
thus proposed a method of estimating F0 from reverberant speech
by utilizing the MTF concept and the source-filter model in complex
cepstrum analysis [7]. However, the method then proposed was only
evaluated in artificial reverberant environments (stochastic approxi-
mation). In this paper, our aim is to compare our evaluations of our
latest method of estimating F0 with traditional methods in terms of
robustness and accuracy in realistic reverberant environments (e.g.,
concert hall, lecture room, and church) to clarify the last issue.
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2. PROPOSEDMETHOD

2.1. Problem with estimating F0

A time-varying harmonic signal, x(t), can be represented as

x(t) =
X

k∈K

ak(t) exp(jωk(t)t + jθk(t)), (1)

where ak(t) is the instantaneous amplitude and θk(t) is the phase.
Here, k denotes the harmonic index and K is the number of harmon-
ics. Since ωk(t) = 2πkF0(t), the fundamental frequency, F0(t), is
an instantaneous frequency so that this should be extracted from x(t)
using instantaneous cues. The task of estimating F0 in reverberant
environments is to extract F0(t) from reverberant speech signal y(t)
or the respective short-term Fourier transform (STFT), Y (ω, τ ):

y(t) = x(t) ∗ h(t) = e(t) ∗ vτ (t) ∗ h(t), (2)

Y (ω, τ ) = X(ω, τ )H(ω, τ ) = S(ω, τ )V (ω, τ )H(ω, τ ),(3)

where X(ω, τ ) and H(ω, τ ) are the STFTs of x(t) and h(t) in room
acoustics. The e(t) is the source signal related to glottal information
and vτ (t) is the impulse response of the filter related to the vocal
tract at time τ . S(ω, τ ) is the STFT of e(t) and V (ω, τ ) is that of
vτ (t). Note that H(ω, τ ) is actually required to present all charac-
teristics of h(t) by using a long-term Fourier transform (LTFT) so
that analysis length should take longer than the reverberation time.

2.2. Complex cepstrum analysis

From Eq. (3), the complex cepstrum of y(t) can be represented as

CY (q, τ ) = Csrc(q, τ ) + Cflt(q, τ ) + CH(q, τ ), (4)

where CH(q, τ ) is the complex cepstrum of the reverberant impulse
response, h(t). Csrc(q, τ ) and Cflt(q, τ ) are the complex cepstra
of source and filter characteristics. These cepstra can also be rep-
resented as all amplitude and phase cepstra (denoted by subscripts
“A” and “φ”). The complex cepstrum can also be separately rep-
resented as minimum and non-minimum phase characteristics (de-
noted by subscripts “min” and “all”). Since |Xall(ω, τ )| = 1 and
CA,all(q, τ ) = 0, CY (q, τ ) can be separately represented as

CY,A,min(q, τ ) + CY,φ,min(q, τ ) + CY,φ,all(q, τ )

= Csrc,A,min(q, τ ) + Csrc,φ,min(q, τ ) + Csrc,φ,all(q, τ )

+Cflt,A,min(q, τ ) + Cflt,φ,min(q, τ ) + Cflt,φ,all(q, τ )

+CH,A,min(q, τ ) + CH,φ,min(q, τ ) + CH,φ,all(q, τ ). (5)

According to Eq. (4), an optimal F0 estimate is only used to extract
Csrc(q, τ ) from CY (q, τ ) to deal with the periodicity/harmonicity
of the source information as a filter and the reverberation character-
istics are eliminated. It is too difficult only to deal with Csrc(q, τ )
in this task of estimation, without measuring h(t) or CH(q, τ ). In
addition, long-term CH(q, τ ), in which analysis takes longer than
the reverberation time, is needed to accurately extract Csrc(q, τ ).

2.3. Proposed method of estimating F0

We found the following useful facts in our previous work [7]:
(1) The all-pass phase component of h(t) can be regarded as a

dominant effect from comparisons of robust and accurate F0estimates.
Therefore, CH,φ,all(q, τ ) can be canceled out in Eq. (5) by LTFT.
(2) Based on the modulation transfer function (MTF) concept, we
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Fig. 1. Algorithm for proposed method.

can establish how much reverberation affects a reduction in the mod-
ulation index and we can then predict the characteristics of room
acoustics (TR) using inverse MTF. Therefore, we can easily predict
that CH,A(q, τ ) will become a cepstral shape which exponential
decay with respect to quefrency. The h(t) can also be estimated
by utilizing â exp(−6.9t/T̂R) with simulated white noise n̂(t) as a
stochastic approximation (for estimating TR in detail, see [7]).
(3) There is a Hilbert transform relationship between CA,min(q, τ )

and Cφ,min(q, τ ), and CH,φ,min(q, τ ) has the same characteristics
in the positive quefrency domain based on the minimum phase char-
acteristics. CH,min(q, τ ) in the lower quefrency parts is generally
larger than those in the higher parts and this attenuates exponentially
as the quefrency increases. Therefore, CH,min(q, τ ) have been as-
sumed to concentrate in the lower quefrency parts.
(4) The cepstrum components of the source characteristics are sep-

arately concentrated in the higher quefrency parts and those of the
filter are separately concentrated in the lower parts based on the ad-
vantages of the source-filter model. Therefore, if a component in the
lower quefrency parts can only be removed by liftering, Cflt(q, τ )
and CH,min(q, τ ) can be canceled out in Eq. (5).

The algorithm for estimating F0 based on complex cepstrum
analysis, the MTF concept, and the source-filter model are explained
in Fig. 1. This method is composed of three main processes: (A) es-
timating the MTF-based reverberation impulse responses and elimi-
nating them from reverberant speech, (B) extracting Xsrc(ω, τ ) from
the processed reverberant speech by using liftering based on the
source-filter model, and (C) estimating F0 from them by using a
final decision block. Comb filtering was employed in the final block
in Fig. 1. Lifter (l(q) = 1, q > qlif and l(q) = 0, q ≤ qlif ) is used
to cancel them out in Eq. (5). Here, qlif = 1.25 ms. This means the
upper limit for estimating F0 is 800 Hz. For details, see [7].
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Table 1. Comparison of percent correct rate (%) within error margin of 5 % in actual reverberant environments. IRdata corresponds to File
No. in [8]. Reverberation time, TR, is the average of TRs for transfer functions at 125 Hz to 8 kHz at octave frequencies. Bold and italic
faces indicate best and worst results. RB, AB, and AC are “reflex board”, “absorption board”, and “absorption curtain”.

Room condition (Impulse response) IRdata TR (s) TEMPO YIN Cepstrum SrcFlt Prop(Org) Prop(Est)

Multi-purpose hall 1 with RB 301 1.09 28.89 35.51 42.22 40.62 50.70 44.99
Multi-purpose hall 1 without RB 302 0.80 33.13 38.36 47.54 47.04 56.79 51.67
Multi-purpose hall 4 with AB 307 1.42 30.21 38.21 46.89 49.52 60.54 54.50
Multi-purpose hall 4 without AB 308 1.54 29.44 37.21 46.04 49.01 60.04 54.20
Classic concert hall 1 (d = 6 m) 310 2.34 29.61 33.71 43.13 46.93 49.59 50.37
Classic concert hall 1 (d = 11 m) 311 2.35 24.90 29.85 37.51 41.02 48.92 45.66
Classic concert hall 1 (d = 15 m) 312 2.39 18.26 26.07 32.70 31.55 40.72 35.46
Classic concert hall 1 (d = 19 m) 313 2.38 14.73 22.97 29.68 27.32 37.38 29.76
Classic concert hall 2 314 1.14 24.19 32.23 38.12 36.11 45.18 40.51
Classic concert hall 4 with AC 316 1.92 23.53 31.26 38.46 38.64 50.82 42.81
Classic concert hall 4 without AC 317 2.55 20.47 27.23 34.49 36.13 48.09 40.33
Classic concert hall 5 323 2.32 25.41 33.39 41.95 41.79 48.20 45.70
Classic concert hall 6 (1F front) 324 1.77 29.99 36.07 45.29 47.20 53.82 51.61
Classic concert hall 6 (2F side) 325 1.74 34.16 38.28 47.13 49.79 55.87 54.07
Classic concert hall 6 (3F) 326 1.69 18.38 23.61 27.84 28.55 41.62 31.53
Lecture room with flatter echoes 201 1.36 32.56 41.51 53.50 51.48 57.89 55.36
Theater hall 318 0.85 32.90 38.06 46.39 45.05 54.16 50.09
Meeting room 401 0.62 57.04 55.28 70.26 70.25 72.58 71.14
Lecture room (capacity: 400 m3) 402 1.12 36.74 47.03 61.52 56.74 61.78 60.14
Lecture room (capacity: 2, 400 m3) 403 1.09 26.48 35.57 44.59 42.22 52.71 46.30
General speech hall (capacity: 11, 000 m3) 404 1.54 23.34 31.97 40.04 38.11 47.47 41.71
Church 1 (capacity: 1, 200 m3) 405 0.71 32.46 38.97 47.31 43.66 52.27 48.22
Church 2 (capacity: 3, 200 m3) 406 1.30 23.67 30.32 36.84 36.15 45.29 41.91
Event hall 1 (capacity: 28, 000 m3) 407 3.03 16.99 22.81 26.91 27.23 37.68 31.94
Event hall 2 (capacity: 41, 000 m3) 408 3.62 15.19 21.78 26.38 27.14 37.61 29.68
Gym 1 (capacity: 12, 000 m3) 409 2.82 19.19 25.95 31.25 32.81 44.95 35.07
Gym 2 (capacity: 29, 000 m3) 410 1.70 22.35 27.77 31.70 32.67 45.67 36.08
Living room in wooden house 411 0.36 74.24 65.35 81.45 73.40 72.08 69.72
Movie theater 412 0.38 42.88 43.30 52.16 51.96 59.32 56.85
Concourse at train station 415 1.95 20.89 24.79 27.57 29.88 44.71 36.44

3. COMPARATIVE EVALUATIONS

3.1. Typical methods of estimating F0

We evaluated nine typical methods to evaluate how robust estimates
of F0 were in reverberant environment. These were AMDF [1],
STFT-ACorrLog (AutoCorrelation of Log-amplitude spectrum) [1],
STFT-Comb (Comb filtering) [1], SHS (sub-harmonic summation)
[1], Cepstrum [2], LPC-residue [1], TEMPO [3], YIN [4], and PHIA
(Periodicity/Harmonicity using IA) [6]. Although other methods
have been proposed, we chose these nine because they are commonly
used in comparative evaluations and these others are just heavy revi-
sions of them. We also evaluated the proposed method with (labeled
“Prop(Est)”) and without (labeled “Prop(Org)”) TR estimates. With
and without comparisons of the proposed method were done to find
how accurate the TR estimates were. We compared them with typi-
cal methods, and a modified complex cepstrum method based on the
source-filter model (labeled “SrcFlt”). The SrcFlt method was used
to find how effectively CH,φ,all(q, τ ) was eliminated by the LTFT
with the proposed method.

3.2. Sound dataset and evaluation measures

The sound dataset we used in this evaluation was the speech database
of simultaneous recordings of speech and EGG by Atake et al. [5].

This dataset consisted of 30 short Japanese sentences uttered by 14
males and 14 females with voiced-unvoiced labels (total of 840 utter-
ances, sampling frequency of 16 kHz, and quantization of 16 bits).

The reverberant speech sentences were created by convolving
the original signals with the reverberant impulse responses, h(t)s.

h(t) = a exp (−6.9t/TR) n(t), (6)

where a is a gain factor as the normalized power of h(t), TR is the
reverberation time, and n(t) is white noise. This is the well-known
stochastic approximation impulse response in room acoustics [7].
This formulation for the impulse response has been used in a study
on speech intelligibility in room acoustics as general artificial rever-
beration and thus has non-minimum phase components [7]. Six re-
verberation conditions (TR = 0.0, 0.1, 0.3, 0.5, 1.0, and 2.0 s) were
used in this study. There were a total of 5, 040 stimuli. Realistic-
reverberant speech sentences were also created by convolving the
original signals with 30-realistic reverberant impulse responses in
room acoustics [8]. There were a total of 25, 200 stimuli.

We used the percent correct rate (%), defined as

Correct rate =
NF0,Est(E)

NF0,Ref

× 100, (7)

where F0,Ref(t) and F0,Est(t) are reference F0 and estimated F0.
NF0,Est(E) is the size of the correct region that satisfies |F0,Ref (t)−
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Fig. 2. Estimation results: percent correct rate within error margin
of 5 % of F0 estimates from reverberant speech as function of TR.

F0,Est(t))|/F0,Ref(t) ≤ E(%) within the voiced section (t) where
E is the error margin (%). NF0,Ref is the size of region F0,Ref(t) in
the voiced section. In this paper, the F0 estimated by TEMPO from
the EGG signal is used as the correct F0 (reference F0, F0,Ref(t)).
F0,Est(t) was used to estimate F0 with the twelve methods from re-
verberant speech signals. Here, E = 5 % was used in the evaluation.

3.3. Results

Figure 2 plots the results of comparative evaluations for the typi-
cal methods of estimating F0 from reverberant speech as a function
of TR. This figure plots the percent correct rates for F0 estimates.
The correct rates of typical methods are drastically reduced as the
reverberation time increases. The correct rates for typical methods
were less than 50 % when TR was 2.0 s. Although the overall ac-
curacy of F0 estimates tended to be reduced as reverberation time
increased, about a 10 % improvement in the correct rates could be
obtained with the new method. There is less difference in the results
for both the proposed methods with and without TR estimates. This
means the TR estimates can work as well. Since a correct rate of
60 % at TR = 2.0 s, was achieved with the method we propose, we
concluded that MTF-based impulse responses can be precisely esti-
mated by utilizing TR estimates. The results from the SrcFlt method

indicate a small improvement (about 3 % in the correct rate) to that
with the cepstrum method. In contrast, there were improvements of
about 7 % in the percent correct rate by using the new method. We
concluded that the use of complex cepstrum analysis with regard to
non-minimum phase characteristics was effective for estimating F0

in reverberant environments.
The proposed method and some other typical methods (TEMPO,

YIN, Cepstrum, and SrcFlt) were compared and evaluated for real-
istic reverberant speech signals. Table 1 lists the results of estimates
(averaged percent correct rate under all conditions). The results for
the other methods are not listed here because there were no dras-
tic improvements. Most of the results achieved by Prop(Org) were
the best overall. This table indicates that Prop(Est) works almost as
well as Prop(Org) when TR is accurately estimated. Improvements
achieved with the proposed methods were over 20 % with TEMPO
and over 10 % with Cepstrum. This suggests that the proposed al-
gorithms are alternatives for solving the last issue of robustness in
terms of reverberation.

4. CONCLUSION

We evaluated the robustness and accuracy of twelve methods of es-
timating F0 (i.e., classic AMDF, STFT-based, cepstrum, LPC, and
SHS algorithms, modern PHIA, YIN, and TEMPO algorithms, and
our proposed algorithms) in both artificial and realistic reverberant
environments using huge speech datasets. The results revealed that
none of the typical previously reported methods could accurately es-
timate F0 in reverberant environments and that their accuracies dras-
tically decreased as reverberation time increased. The results also
demonstrated that periodicity and/or harmonicity on the complex
cepstrum with the source-filter model concept and the MTF concept
could effectively be used to estimate F0 in reverberant environments.
We demonstrated that our new method is robust against reverberation
and can accurately estimate F0 from observed reverberant speech.
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