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ABSTRACT

In this paper, we develop a dual-microphone speech dereverbera-
tion algorithm for noisy environments, which is aimed at suppress-
ing late reverberation and background noise. The spectral variance
of the late reverberation is obtained with adaptively-estimated direct
path compensation. A Markov-switching generalized autoregressive
conditional heteroscedasticity (GARCH) model is used to estimate
the spectral variance of the desired signal, which includes the direct
sound and early reverberation. Experimental results demonstrate
the advantage of the proposed algorithm compared to a decision-
directed-based algorithm.

Index Terms— speech dereverberation, spectral enhancement,
GARCH modeling.

1. INTRODUCTION

In many speech communication systems the received signal is de-
graded by reverberation, as well as background noise. The rever-
berant signal consists of a direct sound, early reverberation, and late
reverberation. Early reflections mainly contribute to coloration and
tend to improve the intelligibility, whereas late reverberation causes
a noise-like perception and degrades the fidelity and intelligibility of
the speech signal.

Speech dereverberation algorithms can be divided into two
classes. Algorithms in the first class are based on estimating and
inverting the room impulse response (RIR), e.g., [1]. In the sec-
ond class, algorithms try to suppress reverberation without estimat-
ing the RIR, e.g., [2]. Recently, Habets et al. [3] proposed a dual-
microphone dereverberation system which is aimed at suppressing
late reverberation that results from the tail of the RIR by apply-
ing a spectral enhancement approach. A direct path compensation
(DPC) is applied to the late reverberant spectral variance estimate
to enable better attenuation of the late reverberation with less dis-
tortion of the desired signal. However, the parameter of the DPC
was evaluated directly from the RIR which is unknown in prac-
tice. In addition, the a priori signal to noise ratio (SNR) required
for the spectral enhancement is estimated by using the traditional
decision-directed approach. Recently, the generalized autoregres-
sive conditional heteroscedasticity (GARCH) model with Markov
regimes has been shown to be useful for speech enhancement appli-
cations [4,5]. The model takes into account the strong correlation
of successive spectral magnitudes, and is more appropriate than the
decision-directed approach for speech spectral variance estimation
in noisy environments.
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In this paper, we develop an improved dual-microphone speech
dereverberation algorithm which relies on a Markov-switching
GARCH (MS-GARCH) modeling of the desired early speech com-
ponent, which consists of the direct sound and early reverberation.
The model is applied to distinctive frequency subbands and speci-
fies the volatility clustering of successive spectral coefficients, while
a speech-absence state is used for evaluating the speech presence
probability. Furthermore, an adaptive approach is developed to es-
timate the parameter for the DPC directly from the observed sig-
nals. Experimental results show that using the MS-GARCH mod-
eling rather than the decision-directed approach, improved results
can be obtained. Furthermore, by using the proposed algorithm, the
performance obtained with blindly estimated DPC parameter is com-
parable to that obtained with an optimal DPC parameter that is cal-
culated from the actual RIR, which is unknown in practice.

The paper is organized as follows. In Section 2, we formulate
the speech dereverberation problem and briefly review the algorithm
proposed in [3]. In Section 3, we derive an adaptive estimator for the
DPC parameter. In Section 4 we describe the MS-GARCH model
which is used for the desired signal, and in Section 5 we present
some experimental results which demonstrate the improved perfor-
mance of the proposed algorithm.

2. DUAL-MICROPHONE DEREVERBERATION

Consider an M —microphone array located in a reverberant environ-
ment. Let am (n) = [am,0 (N),...; Gm,L—1 (n)]T denote the RIR at
time n from the source signal s (n) to the mth microphone, and let
dr (n) denote the noise component received at the mth microphone.
The observed signals are then given by

Zm (n) = ay, (n) s (n) + din (n) (1
where s (n) = [s(n),...,s (n — L+ 1)]". The RIR, a,, (n), can

be divided into the direct path and early reflections, denoted by

a?, (n), and late reflections, denoted by a’, (n). Accordingly,

d .
am,j (n) = { g () 0sj<tr
m,J

ams(n) t<j<L ’ @

where ¢, is the time where the late reverberation starts (about 40 to
80 ms). Hence, the reverberant signal can be divided into two signals

al, (n)s(n) = &m (n) +rm (n) , 3)

where @, (n) is the desired early speech component, and 7., (n)
denotes the late reverberant component. Applying the short-time
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Fig. 1. Dual microphone speech dereverberation system.

Fourier transform (STFT) to the observed signals, we have
Zm (6, k) = X (6, k) + R (0, k) + D (4, k) )

where £ represents the frame index, and & the frequency bin index.
At the output of a delay and sum beamformer (DSB) which is steered
towards the desired source, we have the time-frequency signal

Y (6,k) = X (6,k) + R(C,k) + D (L) . )

Habets et al. [3] proposed a dual microphone dereverberation
algorithm which is aimed at estimating the early speech component.
In the system, shown in Figure 1, it is assumed that the arrival times
of the direct speech signals are aligned. The lower branch is a late re-
verberant spectral variance estimator (LRSVE), j\r (¢, k), while the
upper branch includes a beamformer, a background noise estimator
(NE), Ag (¢, k), and a post-filter. The spectral variance of the noise
signal, \g (¢, k), can be estimated, e.g., using [6]. The a priori SNR

5(67 k) Ar (67 k) + Ad (67 k)
is estimated using the decision-directed approach [7].
The desired spectral coefficients are estimated by minimizing
the mean square error of the log-spectral amplitude (LSA) [8] by
assuming two hypotheses, speech presence (H1) and absence (Ho).
The resulting optimally-modified LSA estimator is given by [9]

(6)

X (6,k) = Ga, (k)" Guy (0K) PR Y (LK), ()

where G, (¢, k) is the LSA gain under speech presence [8] and

CTYHO (éa k) = Gminx )\d (& k)

- ®)
A (6 F) + Ar (6, F)

to allow reduction of the late reverberant signal down to the noise
floor [3]. In the next subsection we derive an adaptive estimator for
the late reverberant spectral variance, and in Section 4 we formu-
late the MS-GARCH modeling applied for the desired signal. The
speech presence probability p (¢, k) is discussed in Section 4.2.

3. LATE REVERBERANT SPECTRAL ESTIMATION

The spectral variance of the late reverberation at each micro-
phone, Ar (¢, k), can be obtained based on Polack’s statisti-
cal reverberation model of the RIR [3], using an estimate of
the spectral variance of the reverberant signal, Ap.m (¢, k) =
E{|Xm(€ k) + Rm (¢, k:)|2} Let Tso(k) denote the reverbera-
tion time of the room in the kth frequency band, let §(k) =
31n(10)/Ts0(k), let R denote the frame rate of the STFT, and let
a(k) = exp{—26(k)R/ fs}. Then, the spectral variance of the late
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reverberant signal A (¢, k) at the output of the DSB is estimated by
S k) = 1S 0 dom (- ok 9
SCUEED SCLE Y (R0 B

However, to avoid over-estimation of A-(¢,k) when the source-
microphone distance is smaller than the critical distance (i.e., the
energy of the direct path is larger than the energy of all reflections)
it was proposed to compensate the over estimation of the spectral
variance of the reverberant signal using

N o ’fm(g) N -
)\b’m(ﬁ) = T5r @ o (0 a(k))\b,m(l 1,k)
1 .
+ m)\b,m(& k), (10)

where km (£) is a compensation parameter which is related to the
direct and reverberant energy at the mth microphone. The compen-
sated estimate S\g,m(é) is then used in (9) as the spectral variance
estimate of the reverberant signal. It was shown in [3] that applying
this DPC prevents over-estimation of the late reverberant spectral
variance and improves the quality of the output signal. However, the
DPC parameter, k., was calculated directly from the presumably
known RIR. Here, we propose to estimate the parameter x,, adap-
tively. In case K, is too large the spectral variance 5\{,7,71 (£, k) could
become larger than Xb,m(é, k), which indicates that over-estimation
can occur and that the value of k,, should be decreased. Further-
more, during the free-decay, which occurs after an offset of the
source signal, J\;,,m(e, k) should be equal to Ay, (£, k). Estimation
of km, could therefore be performed after a speech offset. Unfortu-
nately, the detection of speech offsets is rather difficult. However,
we can conclude that k,, should at least fulfill the following con-
ditions: (i) j\b,m(& k) > Xg’m(& k), (ii) when speech is present
and j\b,m(é, k) < J\;,,m(e, k) the value of k., can be increased,
(iii) when Ap n (€, k) > ngm(é, k) the value of k,, can be decreased

slowly, and (iv) when Ay, (£, k) = X;,,m(z, k) the value of Ky, is as-
sumed to be correct. Therefore, we can update %, (¢) when speech

is present using
Q,%,
an

Ny (0, K
/%m(KJrl)—max{/%m(E)Jrum (z’“ ZACL)
4. MODELING EARLY REVERBERATION USING GARCH

> b (£ k)

where 1 (0 < pe < 1) denotes the step-size.

Speech signals are characterized by time-varying energy levels and
volatility. The spectral coefficients of the speech signal can be ef-
fectively characterized using an MS-GARCH model [4,5]. The
GARCH parameters specify the volatility of the spectral coefficients,
and the Markovian regimes allow the model to switch between dif-
ferent sets of GARCH parameters. et g¢ € {0, ..., @} denote the
active state of a first-order Markov chain at frame ¢ with known
state-transition probabilities. Let Az,q, (¢, k | £ — 1) denote the con-
ditional spectral variance of the desired signal X (¢, k) conditioned
on g¢ and on all information up to previous frame, and let {V' (¢, k) }
be iid complex Gaussian random variables with zero-mean and unit
variance. We assume that the spectral coefficients of the desired sig-
nal follow an MS-GARCH model [4], i.e., given q¢

X (k) = /g, (L K| L= 1)V (€, k) (12)



where

Aaige (k1€ = 1) = Ammin g, + g, |X (€ =1, k)]

+ Bag [Aegems (€= LK€ =2) = Aming,_,] (13)
with Amin,g, > 0 and oy, B4, > 0 for ge = 0,...,Q. As can be
seen from (12) and (13), the conditional spectral variances of suc-
cessive frames at a specific frequency bin are strongly correlated.
However, given the sequence of the conditional spectral variances
and the active states, the spectral coefficients { X (¢, k)} are statisti-
cally independent. It was shown that the spectral variance estimation
resulting from this model is a generalization of the decision-directed
estimator with improved tracking of the speech spectral volatility [4].

4.1. Spectral Variance Estimation

Let Y* = {Y (I, k) | < £} denote the set of the observed spectral
coefficients up to frame ¢. Given V¢ the set of conditional spectral
variances can be recursively estimated using a propagation step

Mgy (0K €—1)
= Amina, + g B{IX (€= LK) |97 qc}
+ B B { A (€= 1,k €=2) |V qe}
- ﬁng{/\mm,qg_l \y"l,qe} (14)
and an update step

E{IX (=10 | Y " a)
> p (- 1Y) B{IX (€= 1.0 19 0}

de—1

S p (g 1Y a) A (C-LR[E=1) . (15)

de—1

A detailed estimation algorithm is given in [4]. The estimate of the
spectral variance of the desired signal is then obtained by

e (k) =3"p (q4|y5) Aesge (K 10) . (16)

Note that although the spectral variance is specified for each
frequency bin independently, the Markovian state is frequency-
independent. However, since different frequency bands of speech
signals are characterized by different energy level and volatility, it
was proposed in [5] to apply the model independently to distinc-
tive subbands. Furthermore, a simple model estimation approach
was proposed such that each state represents different energy level,
and a specific state specifies signal absence. However, in our case
the desired signal contains early reverberation such that the spec-
tral variance at speech offsets has smoother decay than in case of a
nonreverberant signal. Consequently, an immediate transition from
a state which represents high spectral energy to a state which repre-
sents very low energy would not be expected. Therefore, the state
transition probabilities are set such that the probability for a pro-
gressive state-transition is much higher than the probability for an
immediate transition from the higher energy level to the lower.

4.2. Speech Presence Probability

The posteriori speech presence probability, p (¢, k), required for (7)
is originally calculated [9] based on a Gaussian model from the a

priori speech presence probability. The latter is evaluated based on
the time-frequency distribution of the a priori SNR, & (¢, k). For a
multi-sensor system, it was proposed in [3] to exploit the spatial in-
formation and to use additional parameter Pspqriar (¢, k) for the a
priori probability which is evaluated based on the spatial coherence
between the microphone signals. In our case, the multi-state model
for the speech spectral coefficients inherently results in a conditional
probability for each state. Having a specific state for speech absence
(say g¢ = 0), we obtain a speech presence probability for each sub-
band in each frame, p (qg #£0]| y‘). Accordingly, we define

Ph pae#0|Y) > Tn
P (6,k)={ m plae#0[Y) <T, (7
p (QE #0| y[) otherwise

where p; < T; < T}, < pp, are constrain parameters for the subband
speech presence probability. The subband probability, Psy (¢, k), is
employed as an additional multiplicative parameter for the evalua-
tion of the a priori speech presence probability. Note that although
we do not use a specific index for the subband, p (qg #0| yz) is
calculated for each subband independently, and therefore P (¢, k)
includes also a frequency bin index.

5. EXPERIMENTAL RESULTS

In our experimental study, we consider synthetic RIRs which were
generated using the image method. The speech signals, sampled at
8 kHz, include male and female speakers, each of 20 seconds. A
moderate level of white Gaussian noise was added to each of the
microphone signals. The distance between the two microphones is
0.15 meter, and the source-to-microphone distance was set to 0.5 and
1 meter (which are both smaller than the critical distance). While ap-
plying the MS-GARCH model, the model parameters are estimated
from the noisy signal as proposed in [5].

Segmental signal to interference ratio (SegSIR) and log spectral
distortion (1.SD) are used to evaluate the performance of the pro-
posed algorithm, as well as informal listening tests and inspection of
spectrograms. For the quality measures, the direct sound signal was
used as the reference signal. Figure 2 shows experimental results
of the proposed algorithm as a function of the number of GARCH
states, and for several reverberation times. The input SNR is 15
dB and the source to microphone distance is 0.5 m. It can be seen
that the performance improves monotonically with the growth of the
number of states, but, the most significant improvement is achieved
by using up to 3 Markovian states.

Table 1 compares the performance of the proposed algorithm
with that of the original algorithm [3] which employs a decision-
directed estimator for the a priori SNR. The reverberation time is
Tso = 0.5 sec, and the proposed algorithm was applied with 3-state
MS-GARCH model. In both algorithms, the DPC parameters «1 and
ko are blindly estimated adaptively, as proposed in Section 3, and the
results shown in parentheses are obtained using the optimal values
which are evaluated from the actual RIRs. It can be seen that the
GARCH modeling is more advantageous than the decision-directed
approach, and the blindly estimated DPC parameters yield results
which are comparable to using the optimal value.

In Figure 3 spectrogram and waveform of a noisy signal are
shown with input SNR of 20 dB and a source to microphone dis-
tance of 1 m. The smearing caused by the late reverberation and the
background noise are reduced. Wave files are available online at:
http://siglab.technion.ac.il/™ ari_a/Audio_demos.htm.
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Table 1. SegSIR and LSD obtained by using the decision-directed approach and the proposed MS-GARCH-based approach. Tso = 0.5 sec.

In parentheses - results using optimal DPC parameters.

d=0.5 m, SNR=15 dB d=0.5 m, SNR=20 dB d=1m, SNR=15 dB d=1 m, SNR=20 dB
SegSIR [dB] L.SD [dB] | SegSIR [dB] LSD [dB] | SegSIR [dB] L.SD [dB] | SegSIR [dB] LSD [dB]
Unprocessed 5.849 4.875 7.284 2.681 2.295 6.379 2.864 4.578
Decision-directed 8.359 1.995 8.745 1.744 4.289 3.583 4.385 3.482
(8.783) (1.825) (9.230) (1.535) (4.452) (3.455) (4.578) (3.333)
MS-GARCH 9.010 1.700 9.392 1.493 4.551 3.521 4.654 3.442
(9.265) (1.606) (9.715) (1.367) (4.941) (3.390) (5.110) (3.298)
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Fig. 2. SegSIR and LSD as functions of the number of GARCH
states (solid line: Tgo = 0.25 sec, dashed line: Tgo = 0.5 sec, and
dotted line: Tgo = 0.75 sec).

6. CONCLUSIONS

We have developed a dual-microphone speech dereverberation algo-
rithm for noisy environments which is based on MS-GARCH mod-
eling of the desired early speech component. The spectral vari-
ance of the late reverberation is estimated from the observed signals
while compensating for the energy of the direct path. The algorithm
blindly operates in noisy and reverberant environments without any
knowledge of the RIR, except for the reverberation time, which can
be obtained blindly using, e.g., [10]. It is shown that compared to
the original algorithm which employs the decision-directed estima-
tor [3], improved performance is obtained with little distortion to the
desired signal.
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