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ABSTRACT

Many applications require the use of divergence measures between
probability distributions. Several of these, such as the Kullback-
Leibler (KL) divergence and the Bhattacharyya divergence, are
tractable for simple distributions such as Gaussians, but are in-
tractable for more complex distributions such as hidden Markov
models (HMMs) used in speech recognizers. For tasks related to
classification error, the Bhattacharyya divergence is of special im-
portance, due to its relationship with the Bayes error. Here we derive
novel variational approximations to the Bhattacharyya divergence
for HMMs. Remarkably the variational Bhattacharyya divergence
can be computed in a simple closed-form expression for a given se-
quence length. One of the approximations can even be integrated
over all possible sequence lengths in a closed-form expression. We
apply the variational Bhattacharyya divergence for HMMs to word
confusability, the problem of estimating the probability of mistaking
one spoken word for another.
Index Terms: Bhattacharyya Error, Bhattacharyya divergence, vari-
ational methods, Gaussian mixture models (GMMs), hidden Markov
models (HMMs)

1. INTRODUCTION

The Bhattacharyya error between two probability density functions
f(x) and g(x),[1]

B(f, g)
def
=

1

2

∫ √
f(x)g(x) dx, (1)

is commonly used in statistics as a measure of similarity between
two probability distributions. The corresponding Bhattacharyya di-
vergence is defined asDB(f, g) = − log 2B(f, g).
The Bhattacharyya divergence has previously been used in machine
learning as a kernel [2], and in speech recognition for applications
such as phoneme clustering for context dependency trees [3], feature
selection [4]. The Bhattacharyya divergence cannot be computed an-
alytically for a pair of mixture models. It can, however, be computed
analytically for simple distributions such as gaussians. This makes
it possible to come up with some reasonable analytical approxima-
tions for mixture models [5, 6]. In this paper, we show how some of
these approximations can be directly extended to HMMs. We apply
Bhattacharyya divergence to the problem of assigning a score indi-
cating the level of confusability between a pair of spoken words, as
in [6, 7], where the words are modeled by HMMs.
The Bhattacharyya error satisfies the properties B(f, g) = B(g, f)
(symmetry), B(f, g) = 1/2 if and only if f = g (identifica-
tion), and 0 ≤ B(f, g) ≤ 1/2 almost everywhere. The Bhat-
tacharyya error is closely related to the Bayes error, Be(f, g) =
1
2

∫
min(f(x), g(x)) dx ≤ B(f, g) via the power mean inequal-

ity. The Bhattacharyya divergence is also related to the Kullback-

Leibler (KL) divergenceDKL(f‖g) =
∫

f(x) log f(x)/g(x) dx ≥
2DB(f, g), by Jensen’s inequality.
For two gaussians f and g the Bhattacharyya divergence has a
closed–form expression, [8]

DB(f̂ , ĝ) =
1

4
(μf − μg)� (Σf + Σg)−1 (μf − μg)

+
1

2
log

∣∣∣∣Σf + Σg

2

∣∣∣∣− 1

4
log |ΣgΣf | (2)

In fact, the same is true if f and g are any of a wide range of useful
distributions known as the exponential family, of which the gaussian
is the most famous example. The computation is particularly simple
for models with discrete observations. For more complex distribu-
tions such as mixture models or hidden Markov models (HMMs), no
such closed-form expression exists.
Mixture models: We first consider the case where f and g are mix-
ture models, then derive formulas for hidden Markov models. For
the sake of concreteness we use gaussian observation distributions,
without loss of generality. The marginal densities of x ∈ R

D under
f and g are thus

f(x) =
∑

a πaN (x; μa, Σa)

g(x) =
∑

b ωbN (x; μb, Σb)
(3)

where πa is the prior probability of each state, and N (x; μa, Σa)
is a Gaussian in x with mean μa and covariance Σa. We will
frequently use the shorthand notation fa(x) = N (x; μa, Σa) and
gb(x) = N (x; μb, Σb). Our estimates of B(f, g) will make use of
the Bhattacharyya error between individual components, which we
write asB(fa, gb). Note that the techniques we introduce apply even
if fa(x) and gb(x) are not Gaussians, so long asB(fa, gb) is known.
Hidden Markov models: A hidden Markov model (HMM) can be
considered a special case of a GMM in which each state sequence is
considered a mixture component. Hence we can in theory apply any
approximation that works for a GMM to an HMM. To formulate the
Bhattacharyya divergence for hidden Markov models, we must take
care to define them in a way that yields a distribution (integrates to
one) over all sequence lengths. For an HMM, f , emitting an observa-
tion sequence of length n, we let each state a1:n = (a1, . . . , an) be a
sequence of hidden state discrete random variables, at taking values
in E, where E is the set of emitting states. Let x1:n = (x1, . . . , xn)
be a sequence of observations, with xt ∈ R

d. For the observa-
tions we use the shorthand fat

(xt) = N (xt; μat
, Σat

). We also
define non-emitting initial and final state values I, and F. The
state sequence probabilities are thus formulated as a Markov chain
πa1:n

= πa1|I πF|an

∏n
t=2 πat|at−1

, where πa1|I is an initial dis-
tribution, πat|at−1

are transition probabilities, and πF|an
are the

final state transitions. The transition probabilities are normalized
such that

∑
a1

πa1|I = 1, and πF|at−1
+

∑
at

πat|at−1
= 1, for

2 ≤ t ≤ n. For a given sequence length n, we only consider paths
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that reach the final state after exactly n observations. This allows
the HMM to describe a distribution over all sequence lengths. The
density assigned to a particular sequence length f(x1:n) is:

f(x1:n) =
∑
a1:n

πa1:n
fa1:n

(x1:n) (4)

=
∑
a1:n

πa1|IπF|an
fa1

(x1)

n∏
t=2

πat|at−1
fat

(xt), (5)

and likewise for g(x1:n). Note that we can integrate over all se-
quences x ∈ ∪∞n=1R

n×d, by summing over sequence lengths; more-
over

∫
f(x) =

∑∞
n=1

∫
f(x1:n) dx1:n = 1, so this is a proper den-

sity. Because the number of state sequences increases exponentially
with the sequence length, and the observation likelihoods at a given
time point are shared among many paths, practical computation must
invoke an efficient recursion.
Unfortunately, the recursion does not directly extend to the Bhat-
tacharyya divergence between two HMMs, where we have to con-
sider all combinations of state sequences. With HMMs, as with
GMMs, we can reduce the approximation to pair-wise Gaussian
Bhattacharyya divergences. Unless there is a jointly recursive struc-
ture in the two HMMs, the approximation will not be tractable.

2. VARIATIONAL BOUNDS

Variational bounds for mixture models: We can bound the Bhat-
tacharyya error for mixture models using Jensen’s inequality and the
concavity of the square root:

B(f, g) =
1

2

∫ √
fg =

1

2

∫ √∑
ab

πaωbfagb (6)

≥
∑
ab

πaωbB(fa, gb) = B̂jb(f, g). (7)

However, we can improve this bound using variational parameters
that express affinities between the states of the two models [6]. Let
φab ≥ 0 satisfy 1 =

∑
ab φab. Then by use of Jensen’s inequality

we have

B(f, g) =
1

2

∫ √
fg =

1

2

∫ √∑
ab

φab
πafaωbgb

φab
(8)

≥ 1

2

∑
ab

φab

∫ √
πaωb

φab

√
fagb (9)

=
∑
ab

√
φabπaωbB(fa, gb). (10)

This bound holds for any φab. Notice that φab =
√

πaωb, recov-
ers the simple Jensen bound of (6). However, by maximizing with
respect to φab ≥ 0 and the constraint 1 =

∑
ab φab we get

φab =
πaωbB

2(fa, gb)∑
a′b′ πa′ωb′B2(fa′ , gb′)

, (11)

which upon substitution into (10) gives

B(f, g) ≥
√∑

ab

πaωbB2(fa, gb) = B̂vb(f, g). (12)

One problem with this variational method, as well as the simple
Jensen bound, is that they fail to preserve the identification property,

that B̂(f, g) = 1/2 if and only if f = g. This can be enforced by
re-normalizing using the geometric mean of B(f, f), and B(g, g):
B̂norm(f, g) = B̂(f, g)B̂−1/2(f, f)B̂−1/2(g, g). The normalized
estimate is no longer a bound. Nevertheless it is a better approxima-
tion, as shown in Figure 1, relative to Monte Carlo estimates, using
the variational importance sampling technique proposed in [6]. Sur-
prisingly, the normalization makes the looser Jensen bound perform
better than the variational bound. Empirically it also turns out to
work better than other power means. Figure 2 shows that in terms
of approximating the Bayes error, the normalized Bhattacharyya ap-
proximations are almost as good as the Bhattacharyya divergence
itself, as estimated using 1 million samples for each pair of 826
GMMs from a speech recognizer. The iterative variational bound
shown here is given in [6], and does not need normalization.
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Fig. 1. Distribution of Bhattacharyya approximations relative to MC
estimates with 1 million samples, for all pairs of 826 GMMs.
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Fig. 2. Distribution of Bhattacharyya approximations relative to the
Bayes error estimated with 1 million samples, for all pairs of GMMs.

Variational bounds for hidden Markov models: We extend the
bound to HMMs by treating an entire state sequence a1:n as a single
state. Thus it is as if we have a variational parameter φa1:nb1:n for
each pair of sequences. Fortunately the optimized bound of (12) has
a tractable form. Since the variational lower bound sums over the
product of the two states πaωb we can substitute our HMM into this
formula and find the recursion.

B̂vb(f1:n, g1:n)2 =
∑

a1:nb1:n

πa1:n
ωb1:nB2(fa1:n

, gb1:n)

=
∑

a1:nb1:n

πa1|IπF|an
ωb1|IωF|bn

B2(fa1
, gb1)

×
n∏

t=2

πat|at−1
ωbt|bt−1

B2(fat
, gbt

)

=
∑
a1

πa1|I

∑
b1

ωb1|IB
2(fa1

, gb1)

×
∑
a2

πa2|a1

∑
b2

ωb2|b1B2(fa2
, gb2)× . . .

×
∑
an

πan|an−1
πF|an

∑
bn

ωbn|bn−1
ωF|bn

B2(fan
, gbn

). (13)

4558



This can be recursively computed, defining B̃t(at, bt) as the contri-
bution from earlier states to the current estimate at state at, bt.

B̃1(a1, b1) = πa1|I ωb1|I (14)

B̃t(at, bt) = (15)∑
at−1

πat|at−1

∑
bt−1

ωbt|bt−1
B2(fat−1

, gbt−1
)B̃t−1(at−1, bt−1)

Handling the end case we get

B̂vb(f1:n, g1:n) =

√∑
an

πF|an

∑
bn

ωF|bn
B̃n(an, bn)B(an, bn).

In matrix notation, we write the element-wise product as A ◦ B =
{aijbij}, the element-wise exponentiation as A◦n = {an

ij}, and the
Kronecker product asA⊗B = {aijB}. We define transition matri-
ces π = {πat|at−1

} and ω = {ωbt|bt−1
}, and initial and final state

probability vectors, πI = {πa1|I}, ωI = {ωb1|I}, πF = {πF|an
},

ωF = {ωF|bn
}, and Bhattacharyya matrices B = {B(fat

, gbt
)},

and B̃t = {B̃t(at, bt)}. The recursion is then
B̃t = π�(B̃t−1 ◦B

◦2)ω (16)

vec B̃t =
(
(π ⊗ ω) ◦ ( vec �(B◦2)⊗ 1)

)
vec B̃t−1 (17)

= A vec B̃t−1, (18)

where A = (π ⊗ ω) ◦ (
vec �(B◦2)⊗ 1

)
.

Similarly defining vI = πI ⊗ ωI and vF = πF ⊗ ωF ,

B̂vb(f1:n, g1:n) =
√

(vF ◦ vec B◦2)�An vI. (19)

Note that (16) is a more efficient form than (17), taking a factor of
K fewer multiplications, where K = |E| is the number of emitting
states. However (19) has the nice property that An can be computed
using an eigenvalue expansion, which may be much more efficient
for longer sequences.
Considering all sequence lengths, the approximation is simply

B̂vb(f, g) =

∞∑
n=1

B̂(f1:n, g1:n). (20)

Since B̂(f1:n, g1:n) → 0 as n → ∞, in practice the sum can be
truncated to the terms that are significantly non-zero.
In the case of the Jensen bound, we can compute the whole sum
analytically, at the expense of a looser bound. Defining A = (π ⊗
ω) ◦ (

vec �(B)⊗ 1
)
, we get

B̂jb(f1:n, g1:n) =
(
v�F ◦ vec B

)�
AnvI, (21)

Here we can analytically sum over all sequence lengths. Let A =
P−1ΛP be the eigen-decomposition of non-symmetric non-negative
matrixA. Then

∑∞
n=1 An = P−1(I−Λ)−1P − I = (I−A)−1−

I = C if all eigenvalues are less than one in absolute value, which
is guaranteed by the Perron-Frobenius theorem [9]. Hence,

B̂jb(f, g) =

∞∑
n=1

(vF ◦ vec B)�AnvI (22)

= (vF ◦ vec B)�CvI (23)

It is possible to extend the tighter iterative variational bound [6] for
mixture models to HMMs, by factorizing the variational parameters
into a Markov chain, as was done for the KL Divergence in [10].
However this method is more complicated, and models the distribu-
tion over pairs of paths less faithfully.

3. WEIGHTED EDIT DISTANCES

Various types of weighted edit distances have been applied to the
task of estimating spoken word confusability, as discussed in [11]
and [12]. A word is modeled in terms of a left–to–right HMM as in
Fig. 3.

I F

K AO L

Fig. 3. An HMM for call with pronunciation K AO L. In practice,
each phoneme is composed of three states, although here they are
shown with one state each.

The confusion between two words can be heuristically modeled in
terms of a cartesian product between the two HMMs as seen in
Fig. 4. This structure is similar to that used for acoustic perplex-
ity [11] and the average divergence distance [12].
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F

Fig. 4. Product HMM for the words call (K AO L) and dial (D AY
AX L)

In the weighted edit distance (WED), weights are placed on the ver-
tices that assign smaller values when the corresponding phoneme
state models are more confusable. The WED is the shortest path
(i.e., the Viterbi path) from the initial to the final node in the product
graph. [7, 10]

DWED(f, g) = min
n

min
a1:n,b1:n

C(a1:n, b1:n)

where C(a1:n, b1:n) =
∑n

t=1(wfat|at−1

+ wgbt|bt−1

+ wfat
,gbt

)

is the cost of the path, and the w are costs assigned to each tran-
sition. In our experiments we define wfat|at−1

= − log πat|at−1
,

andwgbt|bt−1

= − log ωbt|bt−1
. The weight at each node,wfat

,gbt
,

is a dissimilarity measure between the acoustic models for each
pair of HMM states. For the KL divergence WED, we define
wfat

,gbt
= D(fat

‖gbt
), and for the Bhattacharyya WED, we de-

fine wfat
,gbt

= DB(fat
‖gbt

). An interesting variation, which we
call the total weighted edit distance TWED, is to sum over all paths
and sequence lengths:

DTWED(f, g) = − log
∑

n

∑
a1:n,b1:n

e−C(a1:n,b1:n). (24)

That is, we sum over the probabilities, rather than the costs, which
corresponds to the interpretation as a product HMM. The variational
Bhattacharyya divergence, Dvb

B̂
(f‖g) = − log B̂vb(f‖g), can be
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seen as a special case of the total weighted edit distance, with the
pairwise Bhattacharyya weights, wfat

,gbt
= −2 log B(fat

‖gbt
).

In addition, the TWED with Bhattacharyya weights, wfat
,gbt

=

− log B(fat
‖gbt

) is identical toDjb

B̂
(f‖g) = − log B̂jb(f‖g).

4. WORD CONFUSABILITY EXPERIMENTS

In this section we describe some experimental results where we use
the HMM divergence estimates to approximate spoken word confus-
ability. To measure how well each method can predict recognition
errors we used a test suite consisting of spelling data, meaning utter-
ances in which letter sequences are read out, i.e., ”J O N” is read
as ”jay oh en.” There were a total of 38,921 instances of the
spelling words (the letters A-Z) in the test suite with an average letter
error rate of about 19.3%. A total of 7,500 recognition errors were
detected. Given the errors we estimated the probability of error for
each word pair as E(w1, w2) = 1

2
P(w1|w2) + 1

2
P(w2|w1), where

P(w1|w2) is the fraction of utterances of w2 that are recognized as
w1. We discarded cases where w1 = w2, since these dominate the
results and exaggerate the performance. We also discarded unreli-
able cases where the word counts were too low. Continuous speech
recognition was used, rather than isolated word recognition, so some
recognition errors may have been due to misalignment.
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Fig. 5. The negative log error rate for all spelling word pairs com-
pared to the variational HMM Bhattacharyya score.

Figure 5 shows a scatter plot of the variational Bhattacharyya score
for each pair of letters, versus the empirical error measurement. Note
that similar-sounding combinations of letters appear on the lower left
(e.g. ”c·z”), and dissimilar combinations appear in the upper right
(e.g. ”a·p”). We computed the divergences by direct Monte-Carlo
sampling of the HMM state sequences. In addition to the Bhat-
tacharyya approximations, we also computed KL divergences and a
KL divergence weighted edit distance. Table 1 shows the results us-
ing all the different methods. The HMM Bhattacharyya divergence
approximations outperform all other methods, even the Monte Carlo
Bhattacharyya divergence with 100K samples, much to our surprise.
Figure 5 shows a scatter-plot of the variational Bhattacharyya score

Method Score
MC 100K Min KL Divergence 0.450
MC 100K Bhattacharyya Divergence 0.530
KL Divergence Weighted Edit Distance 0.571
Normalized Bhattacharyya Weighted Edit Distance 0.610
Normalized VB Bhattacharyya Divergence 0.631
Normalized JB Bhattacharyya Divergence 0.646

Table 1. Squared correlation scores between the various
model-based divergence measures and the empirical word con-
fusabilities − log E(w1, w2). VB and JB refer to the varia-
tional bound and Jensen bound respectively. Min refers to the
min(D(f‖g), D(g‖f)). MC 100K refers to Monte Carlo simula-
tions with 100,000 samples of HMM sequences.

This is natural since the Bhattacharyya divergence is known to yield
a tighter bound on the Bayes error than the KL divergence. As with
GMMs, the normalized Jensen bound also outperforms the normal-
ized variational bound for HMMs.
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