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ABSTRACT
Kullback Leibler (KL) divergence is widely used as a measure of
dissimilarity between two probability distributions; however, the re-
quired integral is not tractable for gaussian mixture models (GMMs),
and naive Monte-Carlo sampling methods can be expensive. Our
work aims to improve the estimation of KL divergence for GMMs
by sampling methods. We show how to accelerate Monte-Carlo sam-
pling using variational approximations of the KL divergence. To this
end we employ two different methodologies, control variates, and
importance sampling. With control variates we use sampling to es-
timate the difference between the variational approximation and the
the unknown KL divergence. With importance sampling, we esti-
mate the KL divergence directly, using a sampling distribution de-
rived from the variational approximation. We show that with these
techniques we can achieve improvements in accuracy equivalent to
using a factor of 30 times more samples.

Index Terms— Kullback Leibler divergence, variational methods,
gaussian mixture models, control variates, antithetic variates, impor-
tance sampling.

1. INTRODUCTION

The Kullback Leibler (KL) divergence, [1], also known as the rel-
ative entropy, between two probability density functions f(x) and
g(x),

D(f‖g)
def
=

∫
f(x) log

f(x)

g(x)
dx, (1)

is commonly used in statistics as a measure of similarity between
two density distributions. The KL divergence is used in many as-
pects of speech and image recognition, such as determining if two
acoustic models are similar, [2], measuring how confusable two
word models are [3, 4, 5], computing the best match using histogram
image models [6], clustering of models, and optimization by mini-
mizing or maximizing the KL divergence between distributions.
For two gaussians f̂ and ĝ the KL divergence has a closed formed
expression,

D(f̂‖ĝ) =
1

2

[
log

|Σĝ|
|Σf̂ |

+ Tr[Σ−1
ĝ Σf̂ ]− d (2)

+ (μf̂ − μĝ)T Σ−1
ĝ (μf̂ − μĝ)

]
whereas for two gaussian mixture models (GMMs) no such closed
form expression exists.
In the rest of this paper we consider f and g to be GMMs. The
marginal densities of x ∈ R

d under f and g are

f(x) =
∑

a πaN (x; μa; Σa)
g(x) =

∑
b ωbN (x; μb; Σb)

(3)

where πa is the prior probability of each state, and N (x; μa; Σa) is
a gaussian in x with mean μa and variance Σa.
We will frequently use the shorthand notation fa(x) =
N (x; μa; Σa) and gb(x) = N (x; μb; Σb). Our estimates ofD(f‖g)
will make use of the KL-divergence between individual components,
which we thus write asD(fa‖gb).

2. MONTE CARLO SAMPLING

In the KL divergence, we can separately estimate each component

Da
def
=

∫
Da(x) dx

def
=

∫
fa(x) (log f(x)− log g(x)) dx, (4)

so that D(f‖g) =
∑

a πaDa. To estimate
∫

Da(x) dx using im-
portance sampling, we define a sampling distribution h, with random
variableX ∼ h(x) and evaluate the expected value,

Da =

∫
h(x)

Da(x)

h(x)
dx = Eh

Da(X)

h(X)
= EhDh

a(X). (5)

To estimate this expected value we take Monte Carlo (MC) samples
Xi from h(x), and evaluate the sample mean;

D̂a =
1

n

n∑
i=1

Da(Xi)

h(Xi)
→ Da, (6)

as n →∞, by the law of large numbers. The estimation error,

Std(D̂a) =
1√
n

(∫
D2

a(x)

h(x)
dx−D2

a

) 1
2

, (7)

depends on h(x). It is easy to see that, for a positive Da(x), the
optimal sampling distribution would be h(x) = Da(x)∫

Da(x)dx
which

reduces the estimation error to zero. Of course we cannot use this
distribution, since it requires computing the integral we wish to eval-
uate, but it suggests that our sampling distribution should approx-
imate the function that we are integrating. Intuitively this makes
sense, since it places more samples where the function is furthest
from zero.
It is convenient to use fa(x) as a proposal distribution, which yields
the estimate

D̂a =
1

n

n∑
i=1

log
f(Xi)

g(Xi)
. (8)

This Monte Carlo estimate serves as our baseline. We can improve
convergence if we come up with a sampling distributions close to

Da(x)∫
Da(x)dx

. Thus we consider approximations D̃a(x) ≈ Da(x) that

have a known integral, D̃a
def
=

∫
D̃a(x) dx, and that can be decom-

posed into a difference of positive functions.
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3. CONTROL VARIATES

Another well-known method for variance reduction in Monte Carlo
is the use of control variates [7], which also requires integrable ap-
proximations D̃a(x). Control variates have the advantage that one
merely has to evaluate D̃a(x) and its integral, rather than sampling
from it, and that the approximation D̃a(x) need not be composed of
positive functions. With control variates, instead of estimating the
KL divergence directly we first remove a known quantity given by
an approximation to Da(x), introducing a scaling parameter βa to
obtain the closest approximation.

Da = βaD̃a +

∫ (
Da(x)− βaD̃a(x)

)
dx (9)

If D̃a(x) is a good approximation, the integral of the remainder can
then be estimated by Monte Carlo with lower variance, as illustrated
in Figure 1.

Fig. 1. Integration using control variates: a) (solid) the function
to be integrated, Da(x), b) (dashed) the control variate approxima-
tion, βaD̃a(x), c) (blue) the known integral of the approximation,∫

βaD̃a(x) dx, and d) (green) the remaining area to be estimated,∫
Da(x)− βaD̃a(x) dx.

We formulate the integral as an expected value with respect to the
sampling distribution h(x) of random variableX .

Da = βaD̃a + Eh

Da(X)− βaD̃a(X)

h(X)
(10)

A random variate D̃a(X)/h(X), with known expected value, D̃a is
said to be a control variate for Da(X)/h(X) if the two are corre-
lated. Because of this correlation, the second term is smaller than
the overall integral, and can be estimated using Monte Carlo:

D̂a = β̂aD̃a +
1

n

∑
i

Da(Xi)− β̂aD̃a(Xi)

h(Xi)
. (11)

Often we may know the appropriate value of βa a priori. For in-
stance if the approximation is good, as it is with the variational ap-
proximations, βa = 1 works well. Note that if βa = 0, then (11)
reduces to the standard Monte Carlo estimation. However we can
also empirically optimize βa to minimize the estimation error. The
best value of βaD̃a(x) is of course Da(x), which trivially reduces
the estimation error to zero. This motivates using approximations to
Da(x) as control variates.
The relationship between control variates and importance sampling
is subtle. Given a sampling distribution h(x), consider using the
same function to construct the control variate, so that

h(x) = D̄a(x)
def
=

D̃a(x)∫
D̃a(x) dx

, (12)

then the control variate cancels, and (10) reduces to importance sam-
pling:

Da = βaD̃a + ED̄a

Da(X)− βaD̃a(X)

D̄a(X)
= Eh

Da(X)

h(X)

However, given a particular control variate, βaD̃a(x) the optimal
sampling distribution h(x) would beDa(x)−βaD̃a(x), rather than
Da(x). Similarly, given a sampling distribution, h(x), the optimal
control variate isDa(x)− h(x).

4. ANTITHETIC VARIATES

Antithetic variates provide a complementary means of reducing sam-
pling variance [7]. Antithetic variates take advantage of the symme-
try of fa(x) to draw two simultaneous samples. If X is a random
variable drawn from h(x) = fa(x), then 2μa − X has the same
distribution. By storing some pre-computed constants, we can effi-
ciently evaluate gb and fa′ for both values x and 2μa − x. Thus we
are guaranteed an improvement equivalent to at least doubling the
number of sample points. In some cases there may be further gains
due to the symmetry.

5. THE VARIATIONAL APPROXIMATION

The variational approximation [8], consists of a difference of lower
bounds on the expected likelihoods L

(f)
a (x)

def
= fa(x) log f(x) and

L
(g)
a (x)

def
= fa(x) log g(x). We introduce non-negative variational

parameters, φb|a, such that
∑

b φb|a = 1. By Jensen’s inequality we
have

L(g)
a (x) ≥ fa(x)

∑
ab

πaφb|a log
ωbgb(x)

φb|a

def
= L̃va(g)

a (x)

where

φ̂b|a =
ωbe

−D(fa‖gb)∑
b′ πb′e

−D(fa‖gb′ )
(13)

yields the tightest possible bound.
An integrable approximation toDa(x) is thus

D̃va
a (x) = L̃va(f)

a (x)− L̃va(g)
a (x), (14)

and the variational KL divergence is

D(f‖g) ≈
∑

a

πa

(∫
L̃va(f)

a (x) dx−
∫

L̃va(g)
a (x) dx

)
. (15)

6. THE VARIATIONAL UPPER BOUND

An upper bound to the KL divergence is also introduced in [8]. Let
the variational parameters φb|a ≥ 0 and ψa|b ≥ 0 satisfy the con-
straints

∑
b φb|a = πa and

∑
a ψa|b = ωb. Then the following

inequality holds:

D(f‖g) ≤ −
∑
ab

φb|a

(
log

ψa|b

φb|a

+ D(fa‖gb)

)

def
= Dvb(f‖g). (16)
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To optimize this bound we iterate until convergence

ψa|b =
ωbφb|a∑
a′ φb|a′

, and φb|a =
πaψa|be

−D(fa‖gb)∑
b′ ψa|b′e

−D(fa‖gb′ )
. (17)

An integrable upper bound approximation toDa(x) is

D̃vb
a (x) =

fa(x)

πa

∑
b

φb|a log
φb|afa(x)

ψa|bgb(x)
. (18)

7. VARIATIONAL CONTROL VARIATES

Using (14) and (18) as control variates in (11) allows us to extend
the variational methods to achieve arbitrary accuracy via sampling.

8. TAYLOR SERIES

Another straightforward approximation can be made using the Tay-
lor series.

D(f‖g) ≈
∫ ∑

a

πafa(x)
(
T (f)

μa
(x)− T (g)

μa
(x)

)
dx. (19)

where T
(f)
μa (x) and T

(g)
μa (x) are second-order Taylor expansions of

log f(x) and log g(x), around μa. We can then define an approxi-
mation:

D̃ts
a (x) = fa(x)

(
T (f)

μa
(x)− T (g)

μa
(x)

)
(20)

When using D̃ts
a (x)with antithetical variates, errors in the odd-order

terms cancel, significantly improving efficiency.

9. VARIATIONAL IMPORTANCE SAMPLING

Although the variational approximation D̃a(x) is not positive, it can
be decomposed into a difference of functions Da(x) = L

(f)
a (x) −

L
(g)
a , each of which can be approximated using the variational ap-
proximations, L̃

va(f)
a (x) and L̃

va(g)
a (x). These in turn can be de-

composed into positive functions by separating out the constants.
We have

L̃va(g)
a (x) = fa(x)Cva(g)

a − fa(x)Qva(g)
a (x), (21)

where we define the constant

Cva(g)
a

def
=

∑
b

φb|a

(
log

(
πb

φb|a

)
− 1

2
log

(
(2π)d|Σb|

))
, (22)

and the positive quadratic function,

Qva(g)
a (x) =

1

2

∑
b

φb|a(x− μb)
T Σ−1

b (x− μb). (23)

The gaussian weighted quadratic function fa(x)Q
va(g)
a (x) is posi-

tive and can be integrated to construct a sampling distribution,

hva(g)(x) =
fa(x)Q

va(g)
a (x)∫

fa(x)Q
va(g)
a (x)

. (24)

The desired integral of the likelihood L
(g)
a (x) can then put into the

form,

L(g)
a =

∫
L(g)

a (x) dx (25)

= Cva(g)
a −

∫ (
fa(x)Cva(g)

a − L(g)
a (x)

)
dx

= Cva(g)
a − Ehva(f)

fa(X)C
va(g)
a − L

(g)
a (X)

hva(g)(X)

≈ Cva(g)
a − 1

n

∑
i

fa(Xi)C
va(g)
a − L

(g)
a (Xi)

hva(g)(Xi)

where the Xi have the distribution hva(f)(x). Note that
fa(X)C

va(g)
a /hva(f)(X) can be interpreted as a control variate,

with βa = 1. The importance sampling distribution is also well
matched to the function being estimated,

hva(f)(x) = fa(x)Qva(g)
a (x) = fa(x)Cva(g)

a − L̃va(g)
a (x)

≈ fa(x)Cva(g)
a − L(g)

a (x), (26)

so the estimate will be efficient. A similar derivation applies to
L

(f)
a (x).

Nowwe are left with the non-trivial task of sampling from hva(g)(x).
We proceed by using a change of variables to map fa(x) to a stan-
dard normal distribution φ(y). The cumulative distribution can then
be formulated for each term in the quadratic and added together to
yield the total cumulative distribution, which is then cast in terms of
x, yielding Ga(x). One then samples from the uniform distribution
zi ∼ U(0, 1) and solves for the value xi such that Ga(xi) = zi.
To sample from the variational upper bound, one could separate the
log f and log g components, as in the variational approximation, but
the resulting approximation would no longer be a bound. Sampling
the upper bound without separating the components poses further
difficulties because of the positivity requirement.

10. EXPERIMENTS

In our experiments we used 826 GMMs from an acoustic model used
for speech recognition [2]. The features x ∈ R

d are 39 dimensional,
d = 39, and the GMMs all have diagonal covariance. GMMs. The
number of Gaussians per GMM varies from 1 to 76, with a median
of 9. There were 9,998 Gaussians in total. We used all combinations
of these 826 GMMs to test the various approximations to the KL
divergence. Each of the methods was compared to the reference
approximation, which is the Monte Carlo method with one million
samples, denotedDMC(1M).
Figure 2 shows how the accuracy of the Monte Carlo (MC) esti-
mate improves with increasing number of samples. For all the plots,
the horizontal axis represents deviations from DMC(1M) for each
method. The vertical axis represents the probability derived from
a histogram of the deviations taken across all pairs of GMMs. Note
that even at 100K samples there is still significant deviation from the
reference estimateDMC(1M).
Figure 3 shows the results of the closed-form variational approxima-
tions. Note that Dva performs as well as Monte Carlo using some-
where between 100 and 1000 samples. Dvb is comparable to Dva,
but since it is an upper bound it has a larger bias.
Figure 4 shows histograms for various sampling techniques using
1000 samples. The Taylor series method worked best with the an-
tithetic control variates, and performs about as well as straightfor-
ward Monte Carlo with 10K samples. The antithetic technique was
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Fig. 2. Distribution of Monte Carlo (MC) approximations, for differ-
ent numbers of samples, relative to the reference estimateDMC(1M),
computed from all pairs of GMMs.
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Fig. 3. Distribution of the closed-form approximations to KL diver-
gence relative to the reference estimateDMC(1M).

necessary here to get a significant improvement over the baseline,
Monte Carlo with 1000 samples. The variational control variate, us-
ing D̃va

a (x), performs significantly better on its own, and with the
antithetic technique yields the best of all the methods, giving an ac-
curacy comparable to Monte Carlo with 30K samples. The varia-
tional upper bound did not yield a significant improvement relative to
the variational approximation. The variational importance sampling,
using D̃va

a (x), is nearly as good, but since it is more complicated to
implement, it fails to earn its keep.

The computation time of the variational methods is quadratic in the
number of gaussians in f and g, whereas Monte Carlo sampling is
not. But the variational approximations can be aggressively pruned
to have the same number of components as f + g. The cost of eval-
uating each sample when using variational methods is then compa-
rable to evaluating one sample for Monte Carlo. Since the total cost
of the variational methods still has a fixed quadratic cost, the algo-
rithm with best execution time will depend on the size of the mix-
tures f and g and on the number of samples. As a rule of thumb, the
variational approximations with control variates will generally out-
perform the other methods if the number of samples is larger than
the number of components in f + g. Importance sampling is some-
what slower than the other methods as it requires an inversion of a
cumulative distribution function at each step.

The antithetic technique gives a performance boost to each control
variate method equivalent to doubling the number of samples, or
better. However due to the symmetry involved in the extra samples,
the additional cost can be almost completely absorbed into a pre-
computation step.
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Fig. 4. Distribution of the sampling approximations to KL diver-
gence relative to the reference estimateDMC(1M).

11. CONCLUSION

In this work we demonstrate how to apply Taylor expansion, vari-
ational approximation, and variational upper bound approximation
to accelerate sampling methods using control and antithetic variates.
These methods allow previously known closed-form approximations
to attain arbitrary accuracy given sufficient computational resources.
Experimental results shows that these methods substantially outper-
form the standard Monte Carlo method. An alternative to control
variates is variational importance sampling, which performs well but
is substantially more complex. We anticipate that the novel principle
of combining variational approximation with control and antithetic
variates, will have far-reaching applications in probabilistic infer-
ence and estimation.
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