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ABSTRACT
Motivated by linguistic theories of prosodic categoricity, sym-
bolic representations of prosody have recently attracted the
attention of speech technologists. Categorical representations
such as ToBI not only bear linguistic relevance, but also have
the advantage that they can be easily modeled and integrated
within applications. Since manual labeling of these categories
is time-consuming and expensive, there has been signi cant
interest in automatic prosody labeling. This paper presents a
ne-grained ToBI-style prosody labeling system that makes
use of features derived from RFC and TILT parameterization
of F0 together with a n-gram prosodic language model for 4-
way pitch accent labeling and 2-way boundary tone labeling.
For this task, our system achieves pitch accent labeling accu-
racy of 56.4% and boundary tone labeling accuracy of 67.7%
on the Boston University Radio News Corpus.

Index Terms— prosody, pitch accent, boundary tone,
ToBI, RFC, TILT

1. INTRODUCTION

Over the past couple of decades, linguistic theories of
prosodic categoricity have assumed a position of some im-
portance. The basic premise of these theories is that prosodic
events such as pitch accents and boundary tones are intrinsi-
cally discrete in nature, and can be described by a language-
dependent symbolic alphabet. One of the most popular stan-
dards for categorical annotation of prosodic events is ToBI
(Tones and Break Indices) [1], which was developed in the
early 1990s. A typical ToBI annotation of an utterance con-
sists of four inter-related tiers:

1. the orthographic tier, which provides a plain-text tran-
scription of the utterance.

2. the tone tier, which provides a symbolic transcription
of prosodic events, mainly pitch accents and boundary
tones.

3. the break index tier, which indicates the degree of sepa-
ration (on a 0-4 scale) between successive words in the
utterance.

4. the miscellaneous tier, which is used for comments, or
to annotate non-linguistic phenomena such as dis uen-
cies, laughter, etc.

The most important components of a ToBI-style annota-
tion are the tone tier and the break index tier. The tone tier
marks various categories of pitch accents, the most common
among them being H*, !H*, L*, and L+H*. These repre-
sent high, downstepped, low and rising peak accents, respec-
tively. Boundary tones are categorized as L-L%, L-H%, H-
L% and H-H%, representing different combinations of rising
and falling tones, of which the rst two are the most common.
Boundary tones usually correspond to higher break index val-
ues (3 or 4). On the other hand, a break index value of 0
indicates no separation between the words (cliticization).
The basic dif culty in large scale adoption of categorical

prosody models in spoken language systems is the expense
associated with producing annotated corpora. Manual an-
notation of ToBI-like labels is time-intensive and laborious.
Hence, automatic labeling of prosodic categories is of sig-
ni cant interest to those working in this area. However, the
majority of previous work on prosody labeling [2, 3, 4] has
ignored ne prosodic categories while focusing on binary de-
tection (presence vs. absence) of prosodic events such as pitch
accents and boundary tones.
While knowledge of the presence or absence of prosodic

events is quite useful for many applications, some systems
can bene t from a more detailed description of these events.
For instance, text-to-speech (TTS) systems can use these la-
bels to generate human-like prosody, while dialog systems
may nd them useful for identifying different types of speech
acts such as questions, declarative statements, and exclama-
tions. Fine prosodic categorization is a dif cult proposition
even for human labelers. A study by Syrdal et al. [5] shows
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Table 1. Prosodic event distribution
Label Train Test
!H* 2,863 714
H* 6,203 1543
L* 464 114
L+H* 1,957 485
L-H% 1,782 437
L-L% 2,734 662

that pairwise inter-annotator agreement for the pitch accent
categories of interest to us is of the order of 60%. Agreement
levels for boundary tones is of the order of 75% for the ma-
jority tones L-L% and L-H%. To our knowledge, the only
previous work on automatic ne-grained ToBI labeling is that
of Ross et al. [6], who performed 3-way pitch accent iden-
ti cation (H*, !H* and L*) and 3-way boundary classi ca-
tion (L-L%, H-L% and L-H%) using a decision tree classi er.
They obtained pitch accent classi cation accuracy of 72.4%
(vs. 71.8% chance) and boundary tone classi cation accuracy
of 66.9% (vs. 61.1% chance). However, this study was quite
limited as it used data from only one speaker.
In this paper, we present a ne-grained ToBI labeler for

4-way classi cation of pitch accent (H*, !H*, L* and L+H*)
and 2-way classi cation of boundary tones (L-L% and L-H%)
using features derived from the rise-fall-connection (RFC)
and associated TILT parameterization [7] of the F0 contour.
We also evaluate the usefulness of a n-gram prosodic lan-
guage model for these tasks. The remainder of this paper
is organized as follows. Section 2 describes the data corpus
we use for our experiments. Section 3 gives a description of
our acoustic-prosodic features and classi er. Section 4 intro-
duces the prosodic language model and presents the scheme
for combining acoustic and lexical models for prosody label-
ing. Section 5 gives details of the experimental setup and
presents a summary of the results. Section 6 concludes this
paper with a brief discussion of our contributions and sug-
gests future directions for research in this area.

2. DATA CORPUS

We used the Boston University Radio News Corpus (BU-
RNC) [8] for our prosody labeling experiments. This corpus
consists of about 3 hours of read broadcast news speech from
6 speakers (3 male, 3 female) with ToBI-style pitch accent
and boundary tone annotations. The size of the usable corpus
for pitch accent labelingwas approximately 28,300words and
for boundary labeling, about 29,800 words. Based on analy-
sis of the distribution of various pitch accent and boundary
tone labels in the corpus (Table 1), we limited our pitch ac-
cent categories to 4 types, namely !H*, H*, L+H*, L* and 2
boundary tone categories, namely L-H% and L-L%. The re-
maining categories constituted an insigni cant fraction of the
corpus as compared to the above labels and were hence dis-

Fig. 1. Illustration of RFC parameters

carded. We note that, overall, approximately 14,343 (50.7%)
of the words carried any of the above types of pitch accent,
while about 5,615 (18.8%) of the words carried any type of
the listed boundary tones. For both pitch accent and bound-
ary classi cation tasks, we created 10 training and testing sets
for cross-validation by randomly splitting the dataset with ap-
proximately 80% of the data in the training partitions.

3. ACOUSTIC-PROSODIC MODEL

The acoustic-prosodic model uses raw acoustic correlates of
prosody to classify pitch accents and boundary tones. Since
the target labels are established chie y on the basis of the
shape of the F0 contour in the vicinity of the event, we only
use features derived from the F0 contour for this task.

3.1. F0 Parameterization

Key to the task of ne prosodic categorization is a method for
parameterization of the F0 contour that preserves its shape.
While we used F0 ranges, differences and averages in the
past [4] for establishing presence vs. absence of prosodic
events, these features do not provide the discriminatory power
to enable identi cation of different types of pitch accents and
boundary tones. Although curve- tting algorithms are often
used to parameterize F0 contours, one popular and simple
parameterization is provided by rise-fall-connection (RFC)
analysis [7]. This model is particularly well-known in the
speech synthesis community and is used for generating F0
contours from a small number of parameters.
RFC analysis treats each prosodic event (e.g. pitch ac-

cent or boundary tone) as being comprised of two parts - a
rise component followed by a fall component. Each compo-
nent is described by two parameters - an amplitude (rise amp,
fall amp) and a duration (rise dur, fall dur). In addition,
the RFC model records the peak value of F0 for the event
(f0 height) as well as the position of the event (position)
within the utterance for a total of six parameters that describe
the shape of the local contour. Figure 1 illustrates these pa-
rameters for a sample prosodic event. In this paper, we as-
sume that the locations of the prosodic events (but not their
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ne categories) are already known either by manual annota-
tion or by automated techniques described in previous work.
Hence, we discard the f0 height and position parameters and
retain only the rise-fall amplitudes and durations.
The TILT model is closely related to the RFC model and

describes local F0 contours using three parameters: ampli-
tude, duration and tilt - which are derived from RFC param-
eters using simple algebraic operations as described in [7].
In our experiments, we compared the effectiveness of TILT
parameters versus RFC parameters for ne prosodic catego-
rization. All acoustic features were derived in a speaker-
independent fashion.

3.2. Acoustic-prosodic classi er

The acoustic-prosodic classi er is based on the maximum a-
posteriori (MAP) principle as shown in Eq. 1.

P
∗ = argmax

P

p(P|Ap) (1)

whereP stands for the prosody labels of interest andAp rep-
resents the acoustic-prosodic features. This classi er was im-
plemented as a multi-layer perceptron (MLP) that maps the
acoustic-prosodic features derived from RFC and TILT anal-
ysis to the target labels. The pitch accent classi er was trained
with 8 hidden nodes and 4 output nodes (one for each type of
pitch accent). The boundary tone classi er was trained with
8 hidden nodes and 2 output nodes. We used softmax acti-
vation for the output nodes because it allowed us to interpret
the MLP outputs as posterior probabilities of the correspond-
ing classes. This was useful for integration with the prosodic
language model. The network weights were trained using the
scaled conjugate gradient algorithm.

4. PROSODIC LANGUAGE MODEL

Previous work has demonstrated the usefulness of lexical and
morphological (part of speech) models for automatic detec-
tion of prosodic events in speech [4], where they were shown
to outperform a classi er based purely on acoustic-prosodic
features.
On the other hand, the shape of the local F0 contour is

the primary indicator of ne prosodic categories. In order to
determine whether there is a relationship between lexical or
morphological items and the various types of pitch accents
and boundary tones, we built a model p(P|L) that attempts
to predict prosody labels conditioned on these features. This
was implemented as a factored n-gram model with trigram
context.
We use the MAP framework in Eq. 2 to combine acoustic-

prosodic and lexical evidence for classi cation.

P
∗ = arg max

P

p(P|Ap,L) (2)

In order to make the model more tractable, we invoke
Bayes’ rule and make the simplifying assumption that the
lexical features are conditionally independent of the acoustic-
prosodic features given the prosody labels. The classi cation
equation is then given by Eq 3.

P
∗ = argmax

P

p(Ap,L|P)p(P)

≈ argmax
P

p(P|Ap)p(L|P) (3)

This enables us to separate the joint term in Eq. 3 into a prod-
uct of the acoustic-prosodic model and a prosodic language
model p(L|P). This model was also implemented as a fac-
tored n-gram with trigram context. Posterior probabilities for
the acoustic-prosodic model were obtained from the outputs
of the neural network classi er.

5. EXPERIMENTAL RESULTS

We split the BU-RNC data into 10 random training and test
partitions as described in Section 2. Experiments were per-
formed on all 10 sets and the results reported are averages
across the 10 test partitions. All performance improvment
gures quoted in this section are statistically signi cant at the

p ≤ 0.002 level.
RFC analysis of the smoothed and interpolated pitch con-

tours was carried out using the Edinburgh Speech Toolkit
[9], and the corresponding TILT parameters were computed.
Acoustic-prosodic models were trained using these two sets
of features. We used the Stanford University maximum-
entropy tagger, which uses the Penn Treebank tag set, to au-
tomatically predict POS tags from the orthography. Two vari-
ants of the prosodic language models were built - one using
words and the other using POS tags - in order to determine
which representation was more useful for prosody labeling.
Table 2 summarizes classi cation results obtained under

various con gurations for prosody labeling. In the case of
4-way pitch accent labeling, the chance level baseline accu-
racy of 54.0% was obtained by assigning all pitch accents the
most frequent label, H*. The TILT features did not perform
signi cantly better than chance. However, using the RFC fea-
tures resulted in a performance improvement of 2.4% over
the baseline. The prosodic language models performed sig-
ni cantly worse than chance, indicating that short-range lexi-
cal and morphological context is not useful for predicting ne
pitch accent categories. Due to the poor performance of the
language models, the performance of the integrated classi-
ers was also below chance level. Table 3 shows the class-
confusion matrix for the best performing classi er (acoustic-
prosodic classi er with RFC features). Rows indicate the true
labels, while columns give the predicted labels. We note that
the minority class L* is hardly ever detected, while the ma-
jority of L+H* pitch accents are confused with the dominant
H* pitch accent, a phenomenon also reported in [5].
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Table 2. Prosody labeling accuracy
Method Accent Boundary
Chance (baseline) 54.0% 60.2%
Acoustic (TILT) 54.1% 64.8%
Acoustic (RFC) 56.4% 67.6%
LM (words) 50.5% 66.3%
LM (POS) 50.5% 60.5%
RFC + word LM 50.6% 67.7%
RFC + POS LM 49.4% 67.0%

For 2-way boundary tone classi cation, the chance level
of 60.2% was obtained by setting all boundary tones to the
most frequently occurring one, L-L%. Acoustic-prosodic
classi cation based on TILT features resulted in a 4.6% im-
provement in accuracy, while RFC features performed even
better, with 7.4% improvement. The prosodic languagemodel
based on words beats the baseline by 6.1%, although the
model based on POS tags performs only marginally better
than the baseline. This indicates that short-range lexical con-
text can help predict boundary tone categories. The POS-
based LM is not effective due to two factors: a) errors in-
troduced by the automatic tagger and b) lower granularity of
POS tags vis-a-vis words. The best performing system was
the combination of RFC features and the word-based prosodic
language model, which beat the baseline by 7.5%. The con-
fusion matrix for the best performing classi er (integrated
classi er with RFC features and word-based prosodic LM)
reveals that the majority of boundary tone classes were cor-
rectly identi ed.

6. DISCUSSION AND FUTUREWORK

In this paper, we described a system that uses a simple, low-
dimensional parameterization of the F0 contour based on RFC
and TILT analysis to identify pitch accent and boundary tone
categories in a speaker-independent fashion based on a neural
network classi er. We also tested the performance of short-
range prosodic language models using both words and auto-
matically generated POS tags for labeling.
For both pitch accent and boundary tone labeling, we

found the RFC features to be more useful for classi cation
than the transformed TILT parameters. This is due to the fact
that the transformation process results in a lower dimensional
feature set, which does not retain the complete information
contained in the RFC parameter set. While the languagemod-
els did not improve pitch accent labeling performance, the
word-based prosodic language model signi cantly improved
boundary tone labeling accuracy. When combined with the
acoustic-prosodic model, the integrated classi er gave the
best results for boundary tone classi cation (7.5% improve-
ment over chance level). Our results are not directly compa-
rable to those of Ross et al. [6] due to differences in test condi-

Table 3. Confusion matrices
!H* H* L* L+H*

!H* 208 505 0 1
H* 136 1402 1 4
L* 37 76 0 1
L+H* 21 462 0 2

L-H% L-L%
L-H% 229 209
L-L% 146 515

tions, including size of the corpus, chance levels and number
of speakers. In the future, we plan to explore models based
on long range lexical and syntactic features (derived from a
syntactic parse of the orthography) for ne-grained prosody
labeling.
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