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ABSTRACT

This work investigates the use of missing data techniques for noise
robust speaker identification. Most previous work in this field relies
on the diagonal covariance assumption in modeling speaker specific
characteristics via Gaussian mixture models. This paper proposes
the use of full covariance models that can capture linear correlations
among feature components. This is of importance for missing data
marginalization techniques as they depend on spectral rather than
cepstral feature representations. Bounded and complete marginaliza-
tion schemes are investigated both with diagonal and full covariance
mixture models. Speaker identification experiments using station-
ary and non-stationary noise confirm that full covariance models are
indeed superior compared to diagonal models.

Index Terms— Missing data, robustness, speaker recognition

1. INTRODUCTION

Speaker recognition technology is one of the key factors in control-
ling access to personalized communication devices like voice mail,
voice dialing or telephone banking. It is the process of automati-
cally recognizing who is speaking based on speaker specific charac-
teristics extractable from speech signals. This work deals with text-
independent speaker identification (TI-SID) where the objective is to
find the speaker that best matches the incoming utterance. The use
of Gaussian mixture models (GMMs) has long been established as
state-of-the-art for TI-SID [1]. Each speaker’s voice is modeled via
a GMM representing broad phonetic classes (like vowels, nasals or
fricatives) that correspond to speaker specific vocal tract configura-
tions. However, in real world scenarios the utterance will most likely
contain additional background noise or other competing speakers.
Speaker models are usually trained on clean data and it is this mis-
match between training and testing environments that is responsible
for the low performance under practical conditions.

One promising solution to achieve noise robustness can be found
in the missing data (MD) paradigm which was introduced for speech
recognition [2, 3] and was also successfully applied for noise ro-
bust speaker recognition [4, 5]. Missing data recognition is based on
the observation that under noisy conditions only parts of a spectral
feature vector are corrupted while the remaining components stay
relatively unaffected by the noise. The classification of a partly cor-
rupted feature vector can then be performed on the reliable parts
only, thus effectively ignoring noise contaminated components. If
the decision about the reliability of the spectral components can be
made with absolute certainty MD systems can achieve recognition
performance close to clean conditions even under highly adverse
signal-to-noise-ratios (SNR) [3].
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Fig. 1. Correlation maps for log-spectral FBANK (a) and cepstral
MFCC (b) features for the TiDigit utterance "3033951".

The use of full covariance models has not received much at-
tention in the field of speaker recognition. Rather it is common to
employ GMMs with diagonal covariance matrices in order to re-
duce the number of model parameters and save computation time
[1,4, 5]. However, in contrast to cepstral features for which the diag-
onal covariance assumption is justified log-spectral features exhibit
a high correlation among their components (see Fig. 1). Because
MD marginalization depends on spectral rather than cepstral features
capturing the correlation among feature components is essential for
an appropriate statistical modeling. So far, marginalization based
on full covariance structures was only considered for isolated vowel
classification [6] and speech recognition [2]. Unfortunately, the high
computational cost associated with full covariances prohibits their
use in speech recognition. On the other hand, the considerably sim-
pler architecture of speaker recognition systems makes those models
computationally feasible. However, the increase in model complex-
ity is only acceptable if it is compensated for by gains in recognition
accuracy. To the best of the author’s knowledge this paper consti-
tutes the first attempt to explore the use of full covariance models
for speaker recognition within the MD framework. Building upon
[2, 6] the focus is on quantizing the performance difference between
diagonal and full covariance GMMs when scoring is performed on
masked log-spectral features.

The reminder of this paper is as follows. Section 2 briefly re-
views GMM based speaker identification using the MD approach. In
particular, the use of full and diagonal covariance models with and
without bounded marginalization is discussed. Section 3 presents
the experimental evaluation together with a short discussion on the
obtained results. The paper closes in Section 4 and presents the main
conclusions from this work.
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2. ROBUST SCORING USING MISSING DATA THEORY

Let p(£|\) denote a Gaussian mixture density given by

M

PEIN) =D N (&; s, £i) Q)

i=1

where Z = (x1,22,...,2zp)" € RP is a D-dimensional feature
vector, ¢; € [0, 1] are the mixture component weights and A is a
D-variate Gaussian
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with mean vector ji; € R and covariance matrix ¥; € RP*P.
Each speaker is represented by such a GMM and we follow [1] in
denoting the complete set of parameters by
)\:{Ci,ﬂi,zi}, ’L':1,2,...,M. (3)
The estimation of the parameter set A is usually done on clean data
via EM training and does not require any modifications with respect
to the MD framework. However, during testing the computation of
p(Z]A) has to be adapted in order to take missing components in
Z into account. Let X = {&#1,Z2,...,Zr} be a possibly noise
corrupted observation sequence and A\, A2, ..., As a set of trained
speaker models representing a group of S speakers. The goal is to
find the speaker that maximizes the log-likelihood given X and A
via
T
S = argmax Z log p(Z¢|As)- 4)
1<s<S =1
To accommodate noise corrupted components the observation vector
Z as well as the model parameters fi;, 2; can be separated as

Erm Erul
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U,

where the time subscript ¢ is dropped for convenience and reliable
and unreliable components are marked by r and u respectively. Us-
ing the marginalization approach [2, 3, 7] p(Z|\) is replaced by the
marginal density

M
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where the conditional mean ﬁum € RP+ and covariance matrix

Supr, € RPwXPu are:
Bur, = Huy +Zru, S0, (T, — fir,) )
S, Sy — EiuiZ;li DIMIN ®)

The computation of p(Z,|\) depends on the employed covariance
structure ¥ and the choice of the integration bounds Z;, &5 € RPw,
For log-spectral features in additive noise the clean speech value
is confined to the interval between zero and the observed value
which serves as motivation for the choice of the integration limits
in bounded marginalization techniques [3]. In the following we dis-
cuss four cases based on complete and bounded marginalization with
diagonal and full covariance models respectively.
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2.1. Full covariances with complete marginalization

Let the integration bounds be #; = (—oo,...,—0c0) and T, =
(0o,...,00) and let X, be a full covariance matrix. The unre-
liable components are then completely marginalized by integrating
over the entire conditional Gaussian which simplifies Eq. (6) to

M

= Z CiN(-fr; ﬁri, Erm)v (9)

i=1

p(Zr|A)
where N is a D,--variate Gaussian as defined in Eq. (2).

2.2. Diagonal covariances with complete marginalization

Let the integration bounds be #; = (—o0,...,—0c0) and T, =
(c0,...,00) and let ¥; be a diagonal covariance matrix. Then,
Y, 1s also diagonal with variances afij along its main diagonal. By
exploiting that for multivariate Gaussians zero correlation implies
independence [7], Eq. (9) further simplifies to

p(F|N) = Zcz [TV (wsimy02,) (10)

zjezr
where
1 — pij)?
—— exp {_,M}
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is now a univariate Gaussian with mean 1;; and variance afj.

N(zj5-) = (11)

2.3. Full covariances with bounded marginalization

Let the integration bounds be #; = (0,...,0)" and ¥}, = %, and let
Yrr; and 3y, be full covariance matrices. In order to restrict the
computation time for the evaluation of the multivariate integral in
Eq. (6), Xy, was approximated as a diagonal matrix f]um with
variances &imk. Taking advantage of the diagonal structure of

ium Eq. (6) can be approximated as

Tk

{ET‘A NZCZ H /N xkvﬂuh‘ ik u\T k)dmkv
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(12)

where N (+; fir;, Xrr; ) is @ Dy-variate and N (+; phur,, » u‘r )isa

univariate Gaussian as defined in Eq. (2) and (11). Although simply
ignoring the off-diagonal elements in ¥, ., is a very crude approx-
imation the bounded univariate integrals still contain sufficient in-
formation to improve recognition accuracy (see Section 3.2). More
sophisticated strategies for the evaluation of the multivariate integral
can be employed at the expense of a higher computation time [2, 7].

2.4. Diagonal covariances with bounded marginalization

Let the integration bounds be Z; = (0, . ) and ¥, = &, and let
3’; be a diagonal covariance matrix. Then Ypr; and Xy, are also
diagonal with variances Ufi, and aii . Tespectively. Hence, by ex-
ploiting the independence between feature components Eq. (6) gives

T
AN 39 ) (YCHPER) ) [ PR
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(13)
with univariate Gaussians N\ as defined in Eq. (11). All univariate
integrals in Eq. (12) and (13) can be evaluated using the standard
Gaussian error function [3].



3. EXPERIMENTAL EVALUATION

3.1. Setup

Speaker identification experiments were conducted using the TiDig-
its database. All speech utterances contained connected digits sam-
pled at 20kHz. Note that short utterances with only one digit were
not removed from the data set making it a challenging task for
speaker identification. A subset of 31 speakers (21 male, 10 female)
was randomly selected for evaluation purposes. For each speaker
50 of the available 77 utterances were randomly chosen for model
training while the remaining 27 samples were used for testing. The
Hidden Markov Toolkit (HTK) was employed to learn 1,2,8,16 and
32 mixture component GMMs for each speaker. The feature extrac-
tion used a 25 ms Hamming window with a frame step of 10 ms. A
48-channel HTK mel-filterbank was used to produce 48 log-spectral
energy vectors (FBANK) for the MD system. To obtain a base-
line speaker identification system similar to [S] 24 cepstral features
(MFCC_Z) were derived from the log-spectral energy vectors fol-
lowed by cepstral mean normalization (CMN). All test utterances
were corrupted by white and factory noise taken from the NOISEX
database with SNRs of -5dB to 35dB to simulate additive noise
conditions. Factory noise possesses significant energy below 2 kHz
and because of its non-stationary nature resembles practical condi-
tions more realistic than white noise. Two methods were tested for
constructing the MD mask needed to perform the segmentation in
Eq. (5). The first technique called oracle masking (Oracle) is im-
practical as it utilizes the clean speech and the noise signal [5]. It
is used here to demonstrate the upper performance limit of the MD
approach given a highly accurate mask. Let 2} and xy; denote the
spectral energies at time ¢ and feature component f for the clean and
the noise signal respectively. The oracle mask is defined as

. 1 ifwzyy > @y,
MO(t, f) = ‘ (14)
0 otherwise.
The second technique called spectral substraction (SS) can be imple-
mented in practice but is mainly applicable for stationary-noise types
[3,4]. Let 23 and &; denote estimates for the clean and noise spec-
tral energies and let ;s be the noise corrupted observation. The SS
mask is then defined as
1 if&, > &y,
M(t, f) ::{ o (15)

0 otherwise,

where the estimates for the noise and clean speech energy are

Tavg
1
AT A8 AT
Ty = x and Iy =x1r — T 16
tf Tavg; Tfs tf tf — Zyy (16)

and iff is estimated over the first T3y, = 10 frames of an utterance.

3.2. Results
Model order

The first experiment determined the speaker identification rate in
clean conditions for different GMM configurations and feature pa-
rameterizations (see Tab. 1). The best result was achieved using a full
covariance model with 16 mixtures and log-spectral features. For
both feature types and diagonal covariances increasing the number of
mixtures had a positive impact on performance. However, the boost
was more distinctive for the diagonal case than for its full counterpart
where the one mixture case already outperformed any other diagonal
model. In addition, full covariances were more beneficial for log-
spectral features compared to cepstral coefficients which is intuitive
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Table 1. Speaker identification results in % for full and diagonal
covariance models in clean conditions.

Diagonal Covariance Full Covariance

Mixtures FBANK MFCC_Z FBANK MFCC_Z
1 49.22 77.30 98.21 97.73
8 84.47 89.96 99.16 97.85
16 87.22 91.88 99.28 96.89
32 88.17 91.88 99.04 96.65

as FBANKSs produce high values in the off-diagonal covariance ele-
ments (see Fig. 1). However, as MFCCs are orthogonalized they can
achieve better performance using diagonal models independently of
the number of mixtures used. For comparison purposes all GMMs
in the following experiments used 16 mixture components.

Complete marginalization

The second experiment determined the speaker identification rate
under noisy conditions for the two MD systems using complete
marginalization and the cepstral baseline (see Fig. 2 and 3).

Speaker identification rate (%)
Speaker identification rate (%)

35 3 2 2 15 10 5 0 5 35 3 2 2 15 10 5 0 5
SNR (dB) SNR (dB)

(a) diagonal covariance (b) full covariance

Fig. 2. Speaker identification rates for white noise and complete
marginalization of missing feature components.

Speaker Identification rate (%)
Speaker Identification rate (%)

38 30 25 20 15 10 5 0 -5 3 3 25 20 15 10 5 0 -5
SNR (dB) SNR (dB)

(a) diagonal covariance (b) full covariance
Fig. 3. Speaker identification rates for factory noise and complete
marginalization of missing feature components.

For complete marginalization the SS mask outperformed the
cepstral baseline for all SNRs with white noise corruption. This
is expected as these masks are designed for stationary noise envi-
ronments. Consequently, for non-stationary factory noise and di-
agonal covariances the SS mask failed completely (Fig.3a). The
performance of the oracle mask for diagonal covariances was bet-
ter than baseline but disappointingly low for such an accurate mask
(Fig.2a,3a). In contrast, the oracle mask results for full covariance
models demonstrated a high robustness against both types of noise
(Fig.2b,3b). In addition, modeling the feature correlation enabled
the SS mask to significantly outperform the cepstral baseline even
for factory noise for some SNRs.



Bounded marginalization

The last experiment determined the speaker identification rate under
noisy conditions for the two MD systems using bounded marginal-
ization and the cepstral baseline (see Fig. 4 and 5).
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Fig. 4. Speaker identification rates for white noise and bounded
marginalization of missing feature components.
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Fig. 5. Speaker identification rates for factory noise and bounded
marginalization of missing feature components.

By integrating over unreliable components information in miss-
ing features is exploited and therefore higher speaker identification
rates were achieved compared to simply ignoring these components.
The outcomes regarding diagonal and full covariance models basi-
cally follow the same trends as observed for the complete marginal-
ization in terms of recognition accuracy improvements.

3.3. Discussion

One of the appealing properties of GMMs is their ability to approx-
imate arbitrarily-shaped densities [1, 7]. In [1] it is also argued that
any set of full covariance matrices can be equally replaced by a larger
set of diagonal covariance models . While this work confirmed that
accuracy of diagonal models improves with increasing mixture com-
ponents there remains a large performance gap of 11 % for FBANKSs
and 6 % for MFCC_Z between the best diagonal and full covariance
model (Tab. 1). It is unlikely that further increasing the number of
mixtures will close this difference. Moving from 16 to 32 mixtures
resulted in a minor 1 % increase for FBANKSs while the performance
of the remaining feature sets started to degrade.

Several other observations can be made from the results of the
recognition experiments. The cepstral baseline (MFCC Z) with
diagonal covariance models performed very poorly even for high
SNRs. This is due to the applied CMN which led to a performance
degradation in clean conditions but improved accuracy under noise.
The results for MFCC without CMN were omitted here due to space
constraints. However, the performance consistently improved when
full covariance GMMs were employed (compare Fig. 2-5 (a) and
(b)). This is somewhat unexpected as cepstral features are assumed
to be approximately uncorrelated. On the other hand, the significant
improvements for log-spectral features are not surprising given their
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high correlation among feature components. In particular the results
for oracle masks illustrate this point clearly as diagonal covariance
GMMs performed relatively poorly on these highly accurate masks.

Bounded marginalization led to an improved recognition accu-
racy for both covariance structures, especially in low SNRs. Utiliz-
ing the information in unreliable components made the performance
of oracle masks highly resistent to noises with SNRs between 35 dB
and 0dB (see Fig. 4b, 5b). However, the poor performance in low
SNRs of simple SS masks underlines the need for more accurate
mask estimation techniques. This is the crucial point in MD recog-
nition and is still an area of active research [8, 9, 10].

One point of concern when considering feature correlation is
the increase in model complexity that comes as a price for the im-
proved statistical modeling. Although this issue has not been ad-
dressed here several options exist to speed up computation time. Re-
ferring to Tab. 1 it is clear that for the full covariance case the num-
ber of mixtures could be reduced without sacrificing performance.
Also, other schemes involving grand and global covariances [1, 6]
or block-diagonal structures [11] can be employed to further reduce
the number of parameters and speed up computation.

4. CONCLUSIONS

The following conclusions about the use of full covariance models
for missing data speaker recognition can be drawn.

Firstly, diagonal covariances are inferior to full covariances in
terms of speaker identification rates when considering log-spectral
features in a MD framework. The overall best results for white and
factory noise were obtained using bounded marginalization with full
covariances. Comparisons for oracle masks suggest that full covari-
ance models lead to very high noise robustness revealing the full
potential of MD techniques. Secondly, further research is needed to
overcome computational issues related to the high number of model
parameters when modeling feature correlation. This remains a chal-
lenging task as traditional matrix orthogonalization techniques are
not applicable within the MD framework.
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