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ABSTRACT

In many pattern recognition tasks, given some input data and a fam-
ily of models, the “best” model is defined as the one which maxi-
mizes the likelihood of the data given the model. Extended Baum-
Welch (EBW) transformations are most commonly used as a dis-
criminative technique for estimating parameters of Gaussian mix-
tures. In this paper, we use the EBW transformations to derive a
novel gradient steepness measurement to find which model best ex-
plains the data. We use this gradient measurement to derive a va-
riety of EBW metrics to explain model fit to the data. We apply
these EBW metrics to audio segmentation via Hidden Markov Mod-
els (HMMs) and show that our gradient steepness measurement is
robust across different EBW metrics and model complexities.

Index Terms—Pattern recognition, gradient methods.

1. INTRODUCTION

Pattern recognition [1] is important in a variety of applications, in-
cluding speech recognition, audio classification, speaker verification
and audio information retrieval. In a general pattern recognition task,
given some input data and a family of models, the goal is to evaluate
which model best explains the data. Typically, an objective function,
for example a likelihood probability, is computed to measure how
well the model characterizes the data. Recently, a new approach for
evaluating model fitness to data has been explored which is based on
the principle of howmuch effort is required to change one model into
another given some evaluation data. For example, the Earth Mover’s
Distance (EMD) ([2]) evaluates model fitness to data by calculating
the minimal cost needed to transform one distribution to another. In
addition, feature space Gaussianization [3] computes a distance be-
tween models in an original and transformed feature space.

In this paper, we look to evaluate model fitness by using a gra-
dient steepness measurement. Given some data, a set of models and
an objective function, we can update (train) each of the models by
finding the best step along the gradient of the objective function.
During such an update, each of the models changes such that models
that fit the data best change the least and have the flattest gradient.
Therefore the best fitting model has the flattest gradient slope.

One of the popular training methods used to estimate updated
models, which we explore in this work, is the Extended Baum-Welch
(EBW) transformations. EBW transformations have been used ex-
tensively in the speech recognition community as a discriminative
training technique to estimate model parameters of Gaussian mix-
tures. For example, in [4] the EBW transformations were used for

Maximum Mutual Information (MMI) training of large vocabulary
speech recognition systems.

We have explored using the EBW gradient steepness measure-
ment in a few pattern recognition applications. In [5] the likelihood
ratio test, typically used for audio segmentation tasks, was redefined
with the EBW gradient steepness criteria, while in [6] we explored
using EBW for audio classification. In addition, in [7] the EBW
metric was used in Hidden Markov Models (HMMs) and showed
improvements over the likelihood metric for phonetic recognition.

In this work, we present the gradient steepness metric from a
general pattern processing perspective. First, we continue to expand
on previous work [5], [6], [7]), now looking at a large vocabulary
task, and use the gradient metrics to introduce a variety of novel
EBW methods which can describe model fitness to data. We show
that the EBW gradient measurement is robust across the different
EBW metrics and model complexities and appears to be a general
technique to explain the quality of a model used to represent the
data. While the EBW metrics presented can be used for general pat-
tern processing applications, our experiments focus on using these
metrics for speech/non-speech segmentation of broadcast news via
HMMs, a state of the art method for segmentation [8]. Since HMMs
are so widely used in speech recognition, success of our gradient
steepness measure in HMMs will introduce a new decoding metric.

The following section provides background on the EBW trans-
formations and general gradient measurement, followed by the EBW
metrics in Section 3. Section 4 presents the experiments performed,
followed by a discussion of these results in Section 5. Finally, Sec-
tion 6 concludes the paper and discusses future work.

2. EXTENDED BAUM-WELCH TRANSFORMATIONS

2.1. Derivation of EBW Transformations

The EBW procedure involves continuous transformations that can be
described as follows. Assume that frame xi is drawn from Gaussian
mixture model (GMM) λk, with each component j ∈ k parameter-
ized by the following mean and variance parameters λk

j = {μk
j , σk

j },
and weight wk

j . Thus GMM λk includes all the parameters of the
individual components, in other words λk = {λk

1 , . . . λk
N} and

weights wk = {wk
1 , . . . wk

N}. Let us define the probability of frame
xi given mixture component j as p(xi|λ

k
j ) = zk

ij = N (μk
j , (σk

j )2)

and similarly zk
i =

PN

j=1 wk
j zk

ij . Let F (zk
ij) be some objective

function over zk
ij and ck

ij = zk
ij

δ

δzk
ij

F (zk
ij). Given this function and

initial model parameters λk
j , the EBW transformations provide for-
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mulas to re-estimate model parameters λk
j (ε) = {μk

j (ε), Σk
j (ε)} as:

μ̂k
j = μ̂k

j (ε) =

PM

i=1 ck
ijxiε + μk

jPM

i=1 ck
ijε + 1

(1)

(Σ̂k
j ) = Σ̂k

j (ε)
2

=

PM

i=1 ck
ijxix

T
i ε +

“
μk

j μk
j

T
+ (Σk

j )
”

PM

i=1 ck
ijε + 1

−(μ̂k
j )μk

j

T

(2)
Here ε is a small constant such that F (zk

ij) increases per itera-
tion, that is F (ẑk

ij) ≥ F (zk
ij). [9]

2.2. EBW Fitness Curve

As shown in Figure 1, given an initial model, λ(0), for our data and
an objective function FΛ, we can estimate a new model, λ(ε0), for
our data using the EBW tranformations by finding the best step along
the gradient of the objective function. We can think of the gradient
slope as measuring how much we have to adapt an initial model to fit
the data. In what follows we introduce a general gradient steepness
concept between data and model that generalizes the definition of
gradient steepness and its relation to the EBW transformations.

Fig. 1. EBW Model Update Graph

Definition 1 FITNESS CURVE

Let Λ = {λ(ε)} = {(μ̂(ε)), Σ̂(ε)) ⊂ Rn2+n, 0 ≤ ε ≤ ∞} (3)

denote a parametric curve in (n2 + n)-dimensional vector space
Rn2+n, where ε changes between 0 and∞ and points λ(ε) on this
curve Λ are transformations of means and variance as defined in
(1) and (2). The parameter ε controls the rate at which we estimate
our updated model. If ε is very small then training is very slow
(but stable). However, if ε is too large model re-estimation may not
increase the objective function on each iteration. [9]

Let us call: FΛ : [0,∞] → R, ε → F (λ(ε)) (4)

an EBW fitness curve for a model λ, data Y and function F . Also:

TΛ(0) = limε0→0
FΛ(λ̂(ε0)) − FΛ(λ(0))

ε0
(5)

denote a tangent to the curve FΛ at a point {0, FΛ(λ(0))}, as indi-
cated in Figure 1. Here λ(0) represents the initial model and λ̂(ε0)
the updated model estimated from the EBW transformations defined
in (1) and (2).

Intuitively, the flatter the fitness curve FΛ, the better the initial
model λ(0) fits the data Y . The flatness of the fitness curve FΛ

is represented by the tangent to the curve at point λ(0). In other
words, these tangents T to the fitness curve FΛ at λ(0) characterize
the fitness of model λ(0) to data Y . The smaller these tangents, the
better the fitness. In [9], it was shown that T could be represented as
sum of some squared terms and therefore is always non-negative.

Thus, the EBW transformations provide solutions to estimate
an updated model, and also provide a measure of gradient steepness.
Having a graphical idea of the EBW gradient steepness measure-
ment, we can now derive our gradient measurement more formally.
Using EBW transformations (1) and (2) such that λk

j → λ̂k
j (ε) and

zk
ij → ẑk

ij , [9] derives a linearization formula between F (ẑk
ij) and

F (zk
ij) for small ε as:

F (ẑk
ij) − F (zk

ij) = TΛ(0)ε + o(ε) (6)

Here T measures the gradient required to adapt the initial model
λk

j to data xi, or equivalently how well the data is explained by the
initial model λk

j . The larger the value of T indicates that the gradient
to adapt the initial model to the data is steeper and F (ẑk

ij) is much
larger than F (zk

ij). Thus the data is much better explained by the
updated model λ̂k

j (ε) compared to the initial model λk
j . In the next

section, we derive our EBW gradient steepness metrics using both
sides of Equation 6.

3. EBW GRADIENT STEEPNESS METRICS

Given a family of models Θ = {θ1, θ2, . . . , θK}, the goal of a
generic pattern recognition problem is to which model best describes
data xi ∈ Rd. Below we present the standard Gaussian Mixture
Model (GMM) likelihood method used in pattern recognition tasks.
Then we present our novel EBW metrics derived from our gradient
steepness measurement discussed in Section 2.2.

3.1. GMM Likelihood

Assume that frame xi is drawn from a GMM θk where zk
ij is the

likelihood of frame xi given component j ∈ k and wk
j the a priori

weight of component j. We define the log-likelihood of xi given
model θk by F (zk

i ) as follows:

F (zk
i ) = p(xi|θk) = log

NX
j=1

wk
j zk

ij (7)

Given an input sample xi, we compute how well the data is rep-
resented by each model θk and choose the model θ∗ which has the
maximum likelihood. In other words: θ∗ = arg maxθk

F (zk
i ). Sec-

tions 3.2-3.6 discuss different EBW metrics derived from our gradi-
ent steepness measurement.

3.2. EBW-T

Instead of calculating the likelihood of data xi belonging to model
θk, we can measure this via the T value in Equation 6, as ini-
tially demonstrated in [5]. In [9], Kanevsky derives a closed form
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solution for T given any rational objective function F (zk
i ) and

ck
ij = zk

ij
δ

δzk
ij

F (zk
ij). In this work, we consider F (zk

i ) as given
by Equation 7 and thus:

ck
ij = zk

ij

δ

δzk
ij

F (zk
ij) =

zk
ijw

k
jPN

l=1 wk
l zk

il

. (8)

From [9], it then follows that for small ε, T k
i is given as follows:

T k
i =

NX
j=1

(
dX

r=1

{
PM

i=1 ck
ij [(xir − μk

rj)
2 − (σk

rj)
2]}2

2(σk
rj)

4

)
+

NX
j=1

(
dX

r=1

[

PM

i=1 ck
ij(xir − μk

rj)

σk
rj

]2
)

(9)

Note that T has a closed form solution and does not require
model re-estimation, making it computationally cheap [5]. The best
model θ∗ is the one where the gradient to adapt this model is small-
est, and thus has the smallest T . Thus our decision rule for the best
model can be written as: θ∗ = arg minθk

T k
i . Note that Equation

6 holds only for small ε. In the next section, we introduce another
EBW metric using the left side of Equation 6.

3.3. EBW-F

In this metric, given an input sample xi, the best model θ∗ is the
one which has the smallest increase in likelihood given the updated
modelF (ẑk

i ) relative to the likelihood given the initial modelF (zk
i ).

In other words the decision rule for the best model is:

θ∗ = arg min
θk

“
F (ẑk

i ) − F (zk
i )

”
/ε (10)

We look at using a global value of ε, as well as an adaptive value
of ε, similar to [7]. The higher the likelihood of frame xi given
model θk, i.e. p(xi|θk), the better the initial model θk. Therefore,
we also explore setting 1/ε = p(xi|θk) =

PN

j=1 wk
j zk

ij , which
offers the property that the higher the likelihood the smaller ε and
the slower the updated model is estimated. In [6] and [7], we have
only explored setting F (zk

i ) = p(xi|θk). Below we derive EBW-F
gradient metrics for other objective functions.

3.4. Normalized EBW-T

In [7] we showed that normalizing the EBW-F scores at each frame
allowed for improved performance in HMMs, as scores for a state se-
quence are computed by summing up scores assigned to individual
frames. Here, we derive a similar normalization method for EBW-T.
We can define the normalized EBW distance associated with model
θk and frame xi by normalizing T k

i , the change in likelihood be-
tween an initial and updated model, with the likelihood given the
initial model, p(xi|θk), as:

T k
i /{p(xi|θk)}α (11)

where α is some positive number that controls the weight given to
the likelihood p(xi|θk) relative to T k

i .
This local normalization at each frame xi can be related to

a “global” normalization for a sequence of observation frames
X = {x1, . . . xi, . . . xM}. For example, we can think of X as
representing observations from the best HMM path. Assume the
likelihood score function as p(X|θk) =

Qm

1 p(xi|θk). Then,
the distance T (p(X|θk)) is defined as limε→0

p(X|θk(ε)−p(X|θk)
ε

.

This implies that the distance T has a usual multiplicativity
property for derivatives of products, that is T (p(X|θk)) =P

j

Qj−1
1 p(xj |θk) ∗ T (p(xj |θk) ∗

Qm

j+1 p(xj |θk). Therefore, by
normalizing T (p(X|θk))/p(X|θk) we can represent this as a sum
of local normalizations at each frame:

P
T k

i /p(xi|θk), which is
computed via Equation 11.

3.5. EBW-MMIE

Instead of using the objective function for F given by Equation 7,
we can consider for each frame xi and model θk the MMIE criteria:

F (zk
ij) = log I(xi|θk) = log

p(xi|θk)PL

m=1 p(xi|θm)
(12)

where p(xi|θk) =
PN

j=1 wk
j zk

ij andL is the total number of models.
Using this objective function, ck

ij coefficients for MMIE are:

ck
ij = zk

ij

δ

δzk
ij

F (zk
ij) =

zk
ijw

k
jPL

l=1 wk
l zk

il

−
zk

ijw
k
jP

m,l=1 wm
l zm

il

(13)

Equation 8 gives the formula for the ML based representation
for ck

ij . In this formula, we can see that the higher the likelihood
given component j, that is zk

ijw
k
j , the larger ck

ij and the more weight
is added to T . However the best model is one which has the smallest
T . The MMIE based representation for ck

ij will have a smoothing
effect when some Gaussian component wm

l zm
tl grows significantly.

This can be seen easily from the following example: 1
c
− 1

(c+d)
=

d
c(c+d)

≈ d

c2
. In other words if c grows by some factor h then

1/c− 1/(c + d) decreases by the square factor (c + h)2. Therefore,
with the MMIE criterion, we do not increase ck

ij by as much for a
higher likelihood, which adds less weight to T .

3.6. EBW Forward Algorithm

In the previous methods, models are re-estimated and the EBW is
scored on a per-frame basis. However, in this EBW metric we ex-
plore estimating models using history form previous frames. The
EBW Forward algorithm is described as follows:

For each HMM state st, we associate the following HMM pa-
rameters: λst = {μk

st
, Σk

st
, wk

st
}

Step 1 (t=1): For t = 1, find the “best” EBW first state st = s1

using T (xi|st). We also associate with st = s1 the parameters
Cst = cst

ij , C
1
st

= cst
ij ∗ xi,C2

st
= cst

ij ∗ x2
i , and we set:

μ̃st
ij =

cst
ij ∗ xi ∗ ε + μst

ij

cst
ij ∗ ε + 1

(14)

σ̃st
ij ∗ σ̃st

ij =
cst

ij ∗ x2
i ∗ ε + ((σst

ij )2 + (μst
tj )2)

cst
ij ∗ ε + 1

− (μ̃st
ij )2 (15)

Step t : For each state st perform the following computations:

μ̃st
ij =

(αt ∗ C1
st−1

+ cst) ∗ xi ∗ εt + μ
st−1

ij

(Cst−1
+ cst) ∗ εt + 1

(16)

σ̃st
ij ∗σ̃

st
ij =

(αt ∗ C2
st−1

+ cst
ij ∗ x2

i ) ∗ ε + ((σst
ij )2 + (μst

ij )2)

(Cst−1
+ cst

ij ) ∗ ε + 1
−(μ̃st

ij )2

(17)
Cst = αt ∗ Cst−1

+ cst , C1
st

= αt ∗ Cst−1
+ cst ∗ xi, C2

st
=

αt ∗ C2
st−1

+ cst ∗ x2
i . Where αt = 1 if st = st−1, or αt = 0 if

st 
= st−1. Increase t by 1 and continue.
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4. EXPERIMENTS

We perform speech/non-speech segmentation on the English Broad-
cast News component of the IBM Global Autonomous Language
Exploitation (GALE) system [10]. In our system, speech and non-
speech segments are both modeled by a five-state, left-to-right HMM
[10]. The output distributions in each HMM are tied across all states
and are modeled with mixture of diagonal-covariance Gaussians. In
the HMM segmentation, we first score individual frames using the
distance metrics discussed in Section 3. A Viterbi search then finds
the most likely sequence of states based on these scores.

We use 16 Gaussian mixtures for non-speech and run three ex-
periments, comparing the performance using 50, 100 and 240 Gaus-
sian mixtures for speech. Models are trained using approximately
140 hours of hand-transcribed data from Hub4. For testing, we fo-
cus on the RT-04 test set, which contains 12 shows of roughly 25
minutes (totaling about 300 minutes of Broadcast News).

After speech/non-speech segmentation is performed, we then
decode the resulting speech segments using a speaker-independent
system similar to [10]. Since the overall goal of our GALE system
is to try to find an appropriate segmentation to minimize word er-
ror rate (WER), we evaluate the performance of the different EBW
distance metrics via this criterion.

5. RESULTS

Table 1 shows the final decoding WER and number of errors using
the different EBW metrics and speech mixture components. Please
note that results which are statistically insignificant from the best
performing method in each column are noted by ≈. First, we see
that the performance of each of the EBW metrics is relatively the
same for 240 mixture components, and also similar to the likelihood
and oracle where the true speech/non-speech segments are known a
priori. This demonstrates that our new gradient steepness measure-
ment is robust across different EBW metrics. In addition, note that
the 4 new EBW metrics introduced in this work, namely the EBW-
F Adaptive ε, EBW-Norm, EBW-MMIE, and EBW-Forward algo-
rithms, offer slightly improved performance over the EBW-T and
EBW-F metrics, previously explored in [5] and [6], [7] respectively.

Metric 240 100 50
Mixtures Mixtures Mixtures

Oracle Seg 16.3 (7578) 16.3 (7578) 16.3 (7578)
Likelihood 16.4 (7653) ≈ 16.6 (7725) 16.6 (7743)
EBW-T 16.5 (7682) 18.0 (8393) 17.1 (7979)
EBW-F 16.5 (7665) 16.5 (7693) 16.5 (7705) ≈

EBW-Adapt. 16.4 (7656) ≈ 16.5 (7664) 16.5 (7704) ≈
EBW-Norm 16.4 (7625) ≈ 16.4 (7621) 16.5 (7675)
EBW-MMIE 16.4 (7661) ≈ 16.5 (7691) 16.6 (7715)
EBW-Fwd 16.4 (7617) 16.7 (7788) 16.7 (7778)

Table 1. Word Error Rates and (Number of Errors) for Seg. Metrics

In addition, each EBW metric offers its own individual benefits,
which can be useful depending on the task at hand. For example, as
shown by Equation 9, EBW-T does not require an updated model to
be computed like the EBW-F methods, and therefore offers compu-
tation benefits. In addition, the EBW-F Adaptive method does not
require us to tune ε for the specific task. In tasks where the best
model at each frame is dependent on neighboring frames and does
not change frequently, the EBW-Forward offer advantages, while the
EBW-Norm offers advantages when summing scores across frames.

Finally, when we decrease the number of mixture components
from 240 to 100 to 50, we see that the performance of the likelihood
metric degrades much more relative to the EBW metrics. Please
note that the performance of EBW-FB gets slightly worse because
the model estimates at each point in time are computed based on
previous model estimates, which will be poorer for smaller mixture
components. As shown by Equation 10, the EBW metrics capture
the difference between the likelihood of the data given the initial
model and the likelihood with a model estimated from the current
data frame being classified, while the likelihood just calculates the
former. If the model estimate is poor, the likelihood is not able to
take into account this model error [1] which can be present. There-
fore model re-estimation via EBW using the current data is able to
correct for this initial model error, and explains why the EBW met-
rics outperforms the likelihood for 50 and 100 components.

6. CONCLUSIONS

In this paper, we introduced a novel gradient steepness measurement
that can be used for general pattern recognition tasks to explain how
well the data fits the model. We derived a variety of EBW metrics
from this gradient measurement an applied these metrics for HMM
speech/non-speech segmentation. We found that our gradient mea-
sure was robust across different EBW metrics and model complexi-
ties. In the future, we would like to explore using the EBW gradient
metrics in HMMs for other large scale vocabulary tasks.
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