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ABSTRACT 

This paper details a method for taking into account 
variability influence in HMM-based speech recognition. The 
set of Gaussian components of the mixtures represents the 
entire acoustic space covered for all possible variability 
values. For each utterance to be recognized, the 
corresponding variability value is estimated and used to 
weight and/or constrain dynamically the acoustic space for 
each pdf. To do that, the weight coefficients of the Gaussian 
mixtures are set dependent on the variability value. As an 
example, the variability considered is the inter-speaker 
variability, and is handled through speaker classes. Taking 
into account for each utterance the four speaker classes that 
best match with the utterance signal leads to a significant 
word error rate reduction on a continuous speech recognition 
task, as compared to standard speaker-independent 
modeling. 

Index Terms— Speech recognition, acoustic modeling, 
dynamic Bayesian network, inter-speaker variability, 
speaker class.

1. INTRODUCTION 

It is well known that HMM-based speech recognition 
systems are very sensitive to sources of variability that affect 
the speech signal. This is why best performances are 
achieved when test (operational) environment matches with 
the training environment. Also, the more constrained the 
operating conditions are, the smaller the variability of the 
speech signal is, and consequently the better the recognition 
performance is. This is why speaker-dependent systems 
provide better recognition performance than speaker
independent systems. However using a speaker-dependent 
system is not a tractable solution in voice interactive 
services where anybody can call the service. 

For speaker independent systems, the acoustical models 
are usually adapted to the operational environment, using 
field speech data collected from actual interactions between 
the speakers and the vocal service. Thus, the field adapted 
model matches as closely as possible the operational 
condition, but large variability variations still needs to be 

handled; they are due to many factors [1] such as inter-
speaker variability, varying noise level, etc. 

Increasing the amount of Gaussian components in the 
mixtures usually improves the acoustic modeling, and 
consequently the speech recognition performance. However 
because of the various variability values that need to be 
handled by the model (for example multiple speakers), the 
acoustic space covered by the pdfs is rather large, and limits 
the selectivity of the densities, and hence the recognition 
performance. One way to handle this phenomenon is to use a 
multiple modeling approach [1]. Instead of having a single 
acoustic model covering all the variability values, several 
models are developed, each model covering only a subset of 
the variability values. Then for the recognition process 
several schemes are possible. The variability value can be 
estimated and the corresponding model used for decoding 
the utterance, or the decoding can be performed for each 
model and the one leading to the best score provides the 
answer. Other combination of multiple decoding answers is 
also possible, such as the ROVER approach [2]. 

When the speaker is known, speaker dependent 
modeling is the most efficient approach. Adaptation 
techniques are useful to derive good speaker dependent 
models from a generic speaker independent model and some 
adaptation data collected from the speaker. When only a 
limited amount of adaptation data is available, acoustic 
models can be adapted through eigenvoice-based techniques 
[3] or through interpolating cluster-based models [4] or 
reference speaker models [5]. 

Dynamic Bayesian network (DBN) [6] provides an 
efficient framework for making acoustic models dependent 
on some auxiliary variable that represent the variability 
source under consideration, as for example the pitch in [7] 
or some hidden factors as in [8].  

The approach proposed in this paper benefits from 
several of the above techniques for handling inter-speaker 
variability. First several classes of speakers are determined 
from the training set data, and acoustic models are trained 
for each class of speakers, hence providing multiple acoustic 
models. The acoustic models are merged at the acoustic 
level, this means that the Gaussian components of each pdf 
mixture are obtained by pooling the corresponding Gaussian 
components of the various speaker-class models. Further the 
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weight coefficients of the resulting pooled mixtures are set 
dependent on a speaker class variable using a DBN 
framework. Then before recognizing an utterance, the 
speaker classes that best match with the utterance are 
determined and used to adjust the weight coefficients of the 
mixture components.  

The paper is organized as follows. Section 2 details the 
modeling of inter-speaker variability. Section 3 presents the 
experimental setup. Section 4 analyses the recognition 
results. Finally conclusions are drawn in section 5. 

2. MODELING INTER-SPEAKER VARIABILITY 

The Dynamic Bayesian Network formalism clearly exhibits 
the dependencies that are taken into account in the acoustic 
modeling. In Figure 1, the left part (a) represents the 
classical Gaussian mixture modeling. The mixture 
component km  depends on the state is , and the probability 
of an observation vector tx  is given by: 
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=
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The right part (b) describes the proposed approach. The 
weight coefficient of the Gaussian component km  is set 
dependent on a variability variable v . This leads to the 
following observation probability: 

( ) ( ) ( )
=
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In the following, the variability under consideration 
refers to the inter-speaker variability. However, the approach 
translates easily to any kind of variability. 

txtxtxtx
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 (a) Classical Gaussian (b) Variability dependent 
 mixture Gaussian mixture 

Figure 1: Introducing dependence on variability source. 

Inter-speaker variability is handled through classes of 
speakers which exhibits similar characteristic. A clustering 
technique, described in section 3, is used for obtaining those 
classes on the training data. Let assume that N  speaker 
classes are determined on the training set. An acoustic model 
is then estimated for each speaker-class using the subset of 
training data corresponding to that class. As an adaptation 
technique is used for adapting a speaker independent model 
on each subset of training data associated to a class of 
speakers, it is reasonable to assume that each pdf of the 

various speaker-class adapted models represents the same 
part of sound as for the corresponding pdf of the speaker 
independent model. Hence, these various Gaussian 
components can be pooled to defined the entire acoustic 
space covered for the various variability values (here all the 
classes of speakers). This is represented in Figure 2, where 
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Figure 2: Pooling Gaussian components associated to 
different variability sources. 

The resulting pdf relies on all these pooled Gaussian 
components, but weight them according to an estimation of 
the variability variable v  for the current utterance X . This 
is done in the following way: 
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where kvs ji
c ,,  are the weight coefficients of the adapted 

models 
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and the weight coefficients 
jvλ  are such that 

( ) 1
1

=
= Nj

v X
j

λ  (5) 

It should be noted that some weight coefficients can be 
set to zero, thus forbidding the use of the corresponding 
region of the acoustic space. 

Although in Eq. (3) the weight coefficients 
jvλ  are 

estimated using the entire utterance X , the approach 
translates to a local estimation of a variability criterion, 
either using the current frame, or the beginning of the 
utterance, or even a previous utterance of the same speaker. 
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It all depends on the variability under consideration, and the 
data necessary for its adequate estimation.  

3. EXPERIMENTAL SETUP 

Experiments were conducted on telephone speech data using 
an HMM-based speech recognition system. The training data 
came from the NEOLOGOS corpus available at ELDA [9]. 
The test data was collected during field experiments of the 
Plan Restau service, hence providing spontaneous 
continuous speech data. 

The acoustic analysis was carried out with the front-end 
algorithm ETSI ES 202 212 [10]. This acoustic analysis was 
designed for providing a noise robust front-end for 
distributed speech recognition systems. Here, 10 MFCCs 
and the log Energy coefficients were used, together with 
their first and second order temporal derivatives. Baseline 
acoustic vectors are thus composed of 33 coefficients. 

The NEOLOGOS corpus was produced within the 
French national project NEOLOGOS, as part of the 
Technolangue programme funded by the French Ministry of 
Research and New Technologies (MRNT). It was designed 
in order to represent inter-speaker variability and to be 
characteristic of the French population [11]. The main 
underlying objective was to select a limited amount of 
representative speakers that provided a good coverage of the 
French speakers, and to collect a large amount of data for 
each of these typical speakers. The speakers were selected 
on acoustic basis from preliminary speech data collected 
from a much larger set of speakers. The final speech corpus 
actually consists of 100,000 utterances of different nature 
(connected digits, telephone numbers, credit card numbers, 
spelled words, prompted names and phonetically rich 
sentences) corresponding to 200 selected speakers from the 
different regions of France. 

The NEOLOGOS corpus was then used to define 
classes of speakers and for training the acoustic models 
associated to each class. The N  (here 10=N ) classes of 
speakers were determined automatically through the 
following procedure: 

• First context independent phone models relying on 
single Gaussian densities were estimated for each of 
the 200 speakers of the NEOLOGOS corpus. 

• Then the Gaussian pdfs associated to the central states 
of oral vowels, nasal vowels, fricatives and nasals 
consonants were considered, and the Kullback-Leibler 
distance was computed between these central state 
densities corresponding to the different speakers. 

• Finally the N speaker classes were built through 
hierarchical clustering [11]. 

As the clustering was performed on acoustic basis, the 
data in each class should come from speakers having similar 
characteristics. The size of the resulting classes varies from 
6 speakers for the smallest one to 52 for the largest one.  

Two acoustic models were trained on each class of 
speakers. One was devoted to speech recognition and the 
other to speaker-class recognition in order to estimate the 
variability value, and thus determine the weight coefficients 
of the Gaussian mixtures. 

The speech recognition models were based on context-
dependent modeling of the phonemes, with an a priori 
sharing of the Gaussian mixture densities between contexts 
having similar influence on the acoustic realization of the 
sounds [12]. First speaker independent acoustic models were 
estimated using the entire training set (i.e. 200 NEOLOGOS 
speakers). Mixtures with 8 Gaussian components were used. 
This was the baseline modeling. 

Then using the training subset corresponding to each 
class of speakers, the generic baseline model was adapted 
for each class of speakers. This provided the 10=N
speaker-class acoustic models. The Gaussian components of 
the corresponding pdfs were later pooled as described in 
section 2; and the weight coefficients were determined as 
described below. 

Text-independent speaker recognition techniques were 
used to estimate for each utterance the "similarity" between 
the speaker that has uttered this utterance and each speaker-
class,. A Gaussian mixture model (GMM) jΛ  was 
estimated on the subset of training data corresponding to 
each speaker-class j . Then the likelihood ( )jXP Λ  of the 

utterance X  to be recognized was computed for each 
speaker-class model jΛ . 

Some recognition experiments were conducted using 
only the best matching speaker-class. This amounts to 
having 1

1
=vλ  with 1v  corresponding to the best matching 

speakers-class index, and 0=
jvλ  for 1vv j ≠ . This is like 

decoding with only the acoustic models of the best matching 
class. 

In the second set of experiments, the 4 best matching 
speaker classes were used with the following weight 
coefficients: 4.0

1
=vλ , 3.0

2
=vλ , 2.0

3
=vλ , 1.0

4
=vλ , 

and 0=
jvλ  for 4>j , where 1v  corresponds to the best 

matching speaker-class index, 2v  to the second best 
matching class, and so on. 

Also, for comparison purpose, a last recognition 
experiment was carried out using the acoustic models from 
all the 10 speaker-classes together. The acoustic models 
were merged at the pdf level by pooling the Gaussian 
components of the corresponding speaker-class model pdfs. 

The test data came from the Plan Restau task. It is a 
continuous speech recognition task used with the spoken 
dialog system described in [13] for a tourism telephone 
service. This task is based on a vocabulary of 2200 words 
[14]. The test corpus consists of 1803 utterances collected 

4531



over the telephone from field experiments and corresponds 
to 7607 words. The language model is a bi-gram model. 

4. RESULTS AND DISCUSSION 

Figure 3 reports the recognition results obtained on the Plan 
Restau task in terms of word accuracy. The 95% confidence 
intervals are also indicated in the Figure. 

The leftmost bar indicates the word accuracy obtained 
with the baseline speaker independent model. The second 
bar reports the results obtained using only the acoustic 
model stemming from the best matching class (determined 
for each utterance). The third bar shows the performance 
achieved with the proposed approach using model 
parameters from the 4 best matching classes. Finally the last 
bar presents the results obtained using simultaneously the 
model parameters from all the speaker classes. 
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Figure 3: Recognition accuracy on PlanResto data. 

The proposed method which selects and weight part of 
the acoustical space according to an estimation of the 
variability value provides the best recognition performance. 
The results are significantly better than those obtained with 
the baseline system and better than those obtained using only 
the best matching class. Using parameters from all classes 
together (last bar) is not as good, although the total amount 
of parameters is much larger. 

These results show that it is beneficial to constrain the 
acoustic space allowed during the decoding process 
according to some estimation of a variability criterion, here 
the speaker-class. Also, the constraint must not be too strict. 
Using parameters stemming from several classes and 
adjusting the weights of the corresponding Gaussian 
components seems to be a good compromise. 

5. CONCLUSION 

A method has been proposed to handle inter-speaker 
variability. This method is based on combining speaker-class 
specific acoustic models. The pooling of the Gaussian 
densities for each pdf provides the global acoustic space 
covered by the corresponding sound for the various speakers 

(i.e. various variabilities). The weight coefficients are 
adjusted with respect to the estimated speaker-classes that 
best fit the speaker utterance; this limits the acoustic space 
that is used during decoding, and improves the recognition 
performance. 

Although inter-speaker variability was considered here, 
the approach naturally extends to other kinds of variability 
criteria, such as speaking rate, signal to noise ratio, etc. The 
variability criteria can be estimated on the entire utterance as 
here, or on a frame by frame basis, depending on which 
estimation is the more relevant. 
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