
STREAM WEIGHT TUNING IN DYNAMIC BAYESIAN NETWORKS

Arthur Kantor

University of Illinois at Urbana Champaign
Department of Computer Science

201 N Goodwin Ave
Urbana, IL 61801

Mark Hasegawa-Johnson

University of Illinois at Urbana-Champaign
ECE Department
405 N Mathews

Urbana, IL 61801

ABSTRACT
In this paper we present a family of algorithms for estimating

stream weights for dynamic Bayesian networks with multi-

ple observation streams. For the 2 stream case, we present a

weight tuning algorithm optimal in the minimum classifica-

tion error sense. We compare the algorithms to brute-force

search where feasible, as well as to previously published al-

gorithms and show that the algorithms perform as well as

brute-force search and outperform previously published al-

gorithms. We test the stream weight tuning algorithm in the

context of speech recognition with distinctive feature tandem

models. We analyze how the criterion used for weight tun-

ing differs from the standard word error rate criterion used in

speech recognition.

Index Terms—
Speech recognition

1. INTRODUCTION

This paper concerns itself with the observation model p(o|q),
where o is the observation vector in a given frame, and q is

the discrete hidden state in that same frame. In some mod-

els, the observation vector o is partitioned into K disjoint sets

s1, s2, ..., sK which are conditionally independent given the

hidden state q, so log(p(o|q)) =
∑K

j=1 log(p(sj |q)). The sets

sj are called streams. This kind of independence assumption

is appropriate when the observation consists of both audio

and video, or when the streams are expected to contain com-

plimentary information. Alternative independence assump-

tions are explored in [1]. It may happen that some streams

are better predictors of the hidden variable q than others, so

a weighted linear combination of the stream contributions is

appropriate:

log(p(o|q)) =
K∑

j=1

λj log(p(sj |q)) (1)

where λ is the weight vector. The use of stream weights in

Eq. 1 is equivalent to exponentiating p(sj |q) prior to com-

puting p(o|q). The resulting p(o|q) is a correctly normalized

PDF only if λ = 1 (the vector of ones), but values of λ �= 1
may have better discriminative accuracy. In particular, Iwano

et al. [5] proposed treating Eq. 1 as the equation of a two-class

linear classifier, and using LDA to find λ. Other approaches

have also been suggested [4].

This paper proposes treating Eq. 1 as the equation of a

one-class linear classifier. We find that the one-class clas-

sifier may be effectively trained using a wider variety of

loss functions than the two-class classifier. In particular, the

“mean classifier” (linear loss criterion) works quite well for

a 2-stream recognizer, while the one-class SVM works well

even for 9 streams. Sec. 2 reviews the 2-class LDA training

algorithm for λ proposed by [5] while Sec. 3 reformulates

the problem as a 1-class λ classification problem. Sec. 3.1

presents an algorithm to find globally optimal stream weights

for the case of 2 streams and Sec. 3.2 describes a family of

approximate training algorithms with an arbitrary loss func-

tion for any number of streams. Sec. 3.3 proposes the linear

loss function, computes the analytically exact solution, and

demonstrates resulting error bounds on the computed weight

vector for any particular training corpus size. Experimental

methods are described in Sec. 4.1, and results are given in

Sec. 4.2.

2. CHOOSING λ USING A 2-CLASS CLASSIFIER

Iwano et al. proposed finding the value of λ that minimizes

the expected number of incorrectly labeled phone segments

in the training corpus:

λ∗ = arg min
λ

N∑
i=1

[hλ(Oi) �= w∗
i] (2)

where N is the number of phone segments (or examples) in

the training corpus, w∗
i ∈ W is the correct label of phone

segment i, and Oi = [oi1, . . . , oiTi
] ∈ R

∗ is its observation

sequence with one column per frame and Ti frames. hλ :
R

∗ → W is a classifier which depends on the weight vector λ
and maps from a sequence of observation frames to a phone

label w ∈ W . [p] is the indicator function, defined to equal 1

if the proposition p is true, and 0 otherwise.

45251-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

The classifier hλ(Oi) is a maximum likelihood classifier

hλ(Oi) = arg max
w∈W

K∑
j=1

λj log p(Sij |w) (3)

where Sij = [sij1, . . . , sijTi] is a set of rows from ma-

trix Oi. If we ignore HMM transition probabilities, then

log p(Sij |w) =
∑Ti

t=1 log p(sijt|qt), where qt is any (hope-

fully reasonable) frame alignment of the states composing

phone w. Combining equations gives

λ∗ = arg min
λ

N∑
i=1

⎡
⎣ max

w∈W\w∗
i

⎛
⎝ K∑

j=1

λj log p(Sij |w)

⎞
⎠ ≥

K∑
j=1

λj log p(Sij |w∗
i)

⎤
⎦

(4)

The minimization in Eq. 4 defines a linear two-class classi-

fier, where the features are log p(Sij |w), and the two classes

are wi = w∗
i and wi �= w∗

i . Exact minimization is difficult,

but many useful approximate methods exist: Iwano et al. [5]

suggested using LDA to solve an equation related to Eq. 4.

3. CHOOSING λ USING A 1-CLASS CLASSIFIER

This paper proposes converting Eq. 4 into a one-class linear

classification problem, so that it can be more exactly mini-

mized. Eq. 4 can be rewritten into:

λ∗ = arg min
λ

N∑
i=1

[
max

w∈W\w∗
i

λT diw ≥ 0
]

(5)

where diwj = (log p(Sij |w) − log p(Sij |w∗
i)) and the vector

diw = [diw1, . . . , diwK]T . Each i such that maxw λT diw ≥ 0
is an example i wrongly classified as token w. The goal is to

have all the diw’s on one side of the hyperplane which passes

through the origin and normal to λ. However, if we chose

to give up on one particular dip as a lost cause, we should

also ignore all other diw such that w ∈ W\{p, w∗
i } in the

optimization of λ.

So far, we have defined W to be the set of phones, but W
can consist of words, frames or tokens of some intermediate

duration.

3.1. Optimal solution for the case of 2 streams

If we have only 2 streams (K = 2) we can derive the glob-

ally optimal λ∗ that minimizes the token classification error.

In this case, λ∗ is only a function of the hyperplane angle,

and the objective (the number of misclassified examples) can

change only if a diw moves from one side of the hyperplane

to the other as the hyperplane rotates. This suggests the fol-

lowing algorithm: 1) Sort all diw’s by their angle 2) rotate

the hyperplane while tracking the number of examples on the

wrong side of the hyperplane 3) pick the angle of the hyper-

plane with minimum number of examples on the wrong side.

The complexity of the algorithm is dominated by the sort.

3.2. Approximate solution for the case of more than 2
streams

If K > 2, solving the combinatorial optimization problem

in Eq. 5 is hard. We can replace the 0-1 loss with the sig-

moid loss and the max(X) with the p-norm (
∑

x∈X xp)1/p,

p > 1 and then locally optimize with generalized probabilis-

tic descent, as in standard MCE parameter training [8]. We

choose instead to focus on simplifications of Eq. (5) that are

quadratic, and therefore have computable global optima. We

simplify Eq. 5 as

λ∗ = arg min
λ

N∑
i=1

∑
w∈W\w∗

i

L
(
λT diw

)
(6)

Where L is a loss function that depends on the classification

algorithm. Eq. 6 differs from Eq. 5 in two ways. In (6) we

are over-counting the error on any example i by considering

every diw instead of only the worst-offending diw. Also, in

(5) we are using the 0-1 loss function, while in (6) we choose

different loss functions which yield computationally tractable

classifiers.

We have experimented with three kinds of classifiers: 1)

The ‘mean’ classifier with linear loss function, 2) the linear

kernel SVM [6] classifier with the hinge loss function and 3)

the LDA classifier. The mean classifier sets λ∗ to the negative

mean of the diw’s. The mean classifier is simple and allows

us to put confidence limits on λ∗ as a function of amount of

training data (see Sec. 3.3). The SVM classifier has good gen-

eralization properties and the LDA classifier has been used in

previous work on stream-weight tuning [5].

While the classifier with the 0-1 loss function is insensi-

tive to the magnitude of diw, the above classifiers are sensi-

tive to its magnitude, and the λ’s they suggest will therefore

be dominated by large-magnitude diws. To counteract this,

we normalize the diw’s so Eq. 6 becomes

λ∗ = arg min
λ

N∑
i=1

∑
w∈W\w∗

i

L

(
λT diw

‖diw‖
)

(7)

where ‖ • ‖ is the l2 norm. In our experiments, normalization

was critical for the algorithm’s good performance.

3.3. Linear loss and the mean classifier

If the loss function L(x) is chosen to have a simple enough

form, it is possible to analytically derive the PDF of the statis-

tic λ∗ specified by Eq. 6. For example, if we let L(x) = x

4526

and constrain |λ|2 = K for some constant K, the constrained

optimum is obtained as

λ∗ = arg min
λ

N∑
i=1

∑
w∈W\w∗

i

λT diw +
α

2
(
λT λ − K

)

= − 1
αN(|W | − 1)

N∑
i=1

∑
w∈W\w∗

i

diw,

(8)

where α is a Lagrange multiplier. The value of K is unimpor-

tant, as long as it is nonzero; for convenience, therefore, we

can choose α = 1, so that λ∗ is the negative mean of the diws.

We call this solution the “mean classifier.”

We can derive a confidence angle θ for the mean classifier

and guarantee that with some probability the true weight vec-

tor differs from the predicted weight vector by no more than

θ. This confidence angle can be used to estimate the amount

of training data necessary to accurately determine the weight

vector. Since calculating the diw’s is the most time consuming

part of estimating λ, it is useful to know how much training

data is actually needed.

Because of the central limit theorem, the statistic λ∗ de-

fined in Eq. 8 has an approximately Gaussian distribution,

with a mean equal to λ̄ = −d̄ = −E[diw]. The vectors diw

may be assumed to be identically distributed, but they may

not be assumed to be independent. Under this condition, the

covariance of random variable λ∗ is equal to

Σλ∗ =
1

|N(|W | − 1)|2
∑

i,j,w,p

E
[
(diw − d̄)(djp − d̄)T

]
(9)

In practice, we find that the log probabilities of different tem-

poral segments tend to be uncorrelated (E[(diw − d̄)(djp −
d̄)T] ≈ 0, i �= j), but that different candidate labelings of

the same temporal segment tend to have a very high correla-

tion. If we assume that E[(diw − d̄)(dip − d̄)T] ≈ Σd, where

Σd is the covariance matrix of vector diw, then Eq. 9 may be

simplified to Σλ∗ ≈ Σd/N .

With probability p ≈ 0.95 (2 standard deviations), the

unknown optimum classifier vector λ̄ = −d̄ lies within the

elliptical confidence region (λ∗−λ̄)T (Σd/N)−1(λ∗−λ̄) < 4.

Therefore, with probability p′ > 0.95, λ̄ lies inside a sphere

of radius r = 2σ/
√

N centered at λ∗, where σ2 is the largest

eigenvalue of Σd. Therefore, with probability p′′ ≥ p′ >

0.95, the angle θ = arccos(λ̄T λ∗

‖λ̄‖‖λ∗‖) between the measured

classifier vector λ∗ and the true optimum classifier vector λ̄ is

θ ≤ arcsin(r
‖λ‖). Given a desired confidence angle of θmax,

the number of training segments necessary to estimate λ∗ is

therefore N ≥ 4σ2/‖λ‖2 sin2 θmax.

We computed the 95% confidence angles for bootstrapped

samples of N ≈ 1 million, N ≈ 28 million and N ≈ 40

million. The angles between λ’s derived from bootstrapped

samples were all smaller than the 95% confidence angles.

4. EXPERIMENTS

4.1. Distinctive Feature based Tandem Models

We have tested our weight tuning algorithm in the context

of distinctive-feature-based tandem models [3]. The ‘tan-

dem’ approach involves first training a multi-layer perceptron

(MLP) to perform phone classification at the frame level, and

then using the suitably transformed frame-level phone pos-

terior estimates of the MLP together with standard features

such as perceptual linear prediction coefficients as the obser-

vations in HMMs. In our experiments we trained eight MLPs,

with each MLP trained to compute the value, in one frame,

of a particular phonological distinctive feature. The eight

distinctive features were place, manner, nasality, glottal state,

rounding, vowel identity, vowel height and vowel frontness.

The number of states ranged from 3 to 23. The MLPs were

trained on the Fisher corpus. The MLP outputs are further

transformed to make them suitable for being modeled using a

mixture Gaussian PDF as described in [3].

We experimented, with 2 streams and 9 streams of ob-

servations. In the 9-stream experiment, streams included the

eight MLP outputs, and the PLP coefficients. In the 2-stream

experiment, all 8 MLP output vectors were combined into a

single stream exactly as in [3].

The speech recognizer uses 55 monophone HMMs, with

up to three states per monophone and a total of 132 sub-phone

states (SPS) with up to 128 Gaussians per state. All training

and testing was done using the GMTK toolkit [2].

Except for the training of MLPs, the training, develop-

ment and test data used in these experiments are as specified

by subtask 1 of the 500-word vocabulary Svitchboard task [9].

Words in this database are highly reduced, therefore WERs

tend to be above 60% [7].

For each number of streams, we experimented with two

token sets: words, and sub-phone states (SPS). The size of the

word token set is 501 (500 words plus silence) and the size

of the SPS token set is 132. For each token set, we obtained

forced alignments of the training data using the 2-stream

model with equal stream weights. For each force-aligned

example i, we calculated log p(Sij |w), the log-likelihood of

stream j given the token w, by setting the stream weight

λj = 1 and all other stream weights to 0.

The training vectors diw

‖diw‖ were used in three experimen-

tal systems (the mean classifier, LDA, and SVM), but not in

either of the two baseline systems. Both the 9-stream and 2-

stream models used a two-class LDA with un-normalized log

probability observation vectors (exactly as described by [5])

as a baseline. Stream weights for the 2-stream recognizer

were also estimated by using a grid search to explicitly mini-

mize development set WER.

For each set of weights λ, we locally optimized the WER

as a function language model penalty and scale on a subset of

the development dataset using the amoeba algorithm [10].

4527

grid
model token set λ = 1 search mean LDA SVM LDA [5]
2-stream 60.5 (1.0) 60.2 (1.0525)

word 60.6 (1.1509) 60.0 (1.0611) 60.5 (1.1940) 68.4 (0.0)

sub-phone state 60.2 (1.0489) 60.8 (1.0355) 60.2 (1.9987) 60.0 (1.8493)

9-stream 64.1

word 63.8 61.9 62.2 68.5

sub-phone state 64.0 62.1 61.1 70.0

Table 1. WER of recognizers using the stream weights λ estimated by various strategies. For 2-stream model, the number in

parentheses is the ratio of MLP to PLP stream weights.

The λ along with the optimal language model penalty and

scale were then used for Viterbi decoding of the test set.

4.2. Results

In table 1, the λ = 1 column shows the baseline WER if

the stream weights are set to 1 (no tuning). The results are

similar to previous work [7] reported on the same data set.

The grid search was only practical for the 2-stream model. In

the grid search, the PLP weight was fixed at 1, and the MLP

weight varied from 0 to 1.5. Minimum dev-set WER within

this range was achieved with the MLP weight set to 1.0525.

In addition to the grid search baseline, we implemented

the LDA algorithm as described in [5], which uses LDA to

find a separator between the correct and incorrect log p(Sij |w)
vectors (“two-class LDA”). If any of the resulting weights are

negative, they are truncated to 0. As an additional experi-

ment, we used LDA to separate the normalized diw’s from

the origin (“one-class LDA”), and allowed negative weights.

The results for two-class and one-class LDA are in the ‘LDA

[5]’ and ’LDA’ columns of table 1 respectively.

Table 1 shows that stream weight tuning using an accurate

classifier is particularly important as the number of streams

increases.

5. CONCLUSION

We have presented a globally optimal algorithm for stream

weight tuning for 2 streams, and a family of approximate

stream weight algorithms for an arbitrary number of streams.

Using the algorithm with the SVM classifier applied to short

duration tokens yields lower WER than no weight tuning,

with improvements becoming more significant as the number

of streams increases.

6. REFERENCES

[1] J. Bilmes and K. Kirchhoff. Directed graphical models

of classifier combination: Application to phone recog-

nition. In ICSLP, 2000.

[2] J. Bilmes and G. Zweig. The graphical models toolkit:

An open source software system for speech and time-

series processing, 2002.

[3] O. Cetin, A. Kantor, S. King, C. Bartels, M. Magimai-

Doss, J. Frankel, S. King, and K. Livescu. An articu-

latory feature-based tandem approach and factored tan-

dem observation modeling. In ICASSP, 2007.

[4] G. Gravier, S. Axelrod, G. Potamianos, and C. Neti.

Maximum entropy and MCE based HMM stream

weight estimation for audio-visual ASR. In ICASSP,

2002.

[5] K. Iwano, K. Kojima, and S. Furui. A weight estimation

method using LDA for multi-band speech recognition.

In ICSLP, volume 7, pages 2534–2537, 2006.

[6] T. Joachims. Training linear svms in linear time. In

KDD, pages 217–226, 2006.

[7] O. Cetin K. Livescu, M. Hasegawa-Johnson, S. King,

C. Bartels, N. Borges, A. Kantor, P. Lal, L. Yung,

A. Bezman, S. Dawson-Haggerty, B. Woods, J. Frankel,

M. Magimai-Doss, and K. Saenko. Articulatory feature-

based methods for acoustic and audio-visual speech

recognition: Summary from the 2006 JHU summer

workshop. In ICASSP, 2007.

[8] S. Katagiri, B. Juang, and C.H. Lee. Pattern recognition

using a family of design algorithm based upon the gen-

eralized probabilistic descent method. Proc. of IEEE,

1998.

[9] S. King, C. Bartels, and J. Bilmes. Svitchboard 1: Small

vocabulary tasks from switchboard 1. In Interspeech,

2005.

[10] J.A. Nelder and R. Mead. A simplex method for func-

tion minimization. Computer J., 7, 1965.

4528

