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ABSTRACT

This paper presents a novel discriminative training criterion, Min-
imum Word Classi cation Error (MWCE). By localizing conven-
tional string-level MCE loss function to word-level, a more direct
measure of empirical word classi cation error is approximated and
minimized. Because the word-level criterion better matches perfor-
mance evaluation criteria such as WER, an improved word recog-
nition performance can be achieved. We evaluated and compared
MWCE criterion in a uni ed DT framework, with other commonly-
used criteria including MCE, MMI, MWE, and MPE. Experiments
on TIMIT and WSJ0 evaluation tasks suggest that word-level MWCE
criterion can achieve consistently better results than string-level MCE.
MWCE even outperforms other substring-level criteria on the above
two tasks, including MWE and MPE.

Index Terms— Discriminative training, Minimum classi ca-
tion error, Minimum word classi cation error, Speech recognition

1. INTRODUCTION

It has been shown in recent years that Discriminative Training (DT)
methods are able to produce solid and consistent performance im-
provements not only for small parameter sets, but also for large-
vocabulary speech recognition tasks. The success of DT methods
for large-scale tasks relies on the development of the following key
techniques: a) proposing of new DT criteria, b) use of lattices which
compactly represent competing space, and c) advance in parameter
optimization methods for HMMs.

This study focuses on the rst category of techniques, to develop
a new discriminative training criterion. The most widely used DT
criteria nowadays include conventional Maximum Mutual Informa-
tion (MMI) [1], Minimum Classi cation Error (MCE) [2], and newly
proposed Minimum Word / Phone Error (MWE / MPE) [3]. Being
regarded as derived from the same pipeline of MMI, MWE and MPE
are usually shown to outperform string-level MMI on many tasks [3],
mainly due to the exploiting of local information of substring-level
accuracy. By maximizing the expected word or phone accuracy on
training data, MWE and MPE are often seen to be more directly re-
lated to performance evaluation measures, such as Word Error Rate
(WER), than MMI.

Similar to MMI, conventional MCE criterion for HMM based
speech recognition is also implemented on string-level [4]. String-
level MCE aims at minimizing a smoothed measure of string er-
ror, which indirectly minimizes our ultimate goal of word error. It
should be noted, however, that there is a considerable mismatch be-
tween string error and word error. These two measures are related
to some extent, but not equivalent. In order to develop new crite-
ria which minimize word-level error rather than string error, several

attempts have been made along the MCE pipeline, including gen-
eral MCE loss function [5], label-based phoneme-level MCE [6],
and phone-discriminating MCE [7]. However, these methods are de-
rived more from intuition, and lack of proof of their relationship with
true word errors. Moreover, the performance gain reported in those
work when comparing with conventional string-level MCE is only
marginal. Therefore, a new MCE based criterion which has closer
relation to the word-level performance evaluation measures is more
desired.

In this paper, we propose a novel word-level DT criterion, namely
Minimum Word Classi cation Error (MWCE). We aim at choosing
appropriate discriminant functions, misclassi cation measure, and
loss function so that a more direct measure of word-level error on
the training set can be approximated and minimized. In contrast to
string-level MCE, minimizing our proposed word-level error mea-
sure can directly attack the ultimate problem of minimizing WER.
Therefore, an improved word recognition performance can be ex-
pected by using MWCE.

The main difference compared with previous research [5, 6, 7] is
that in this study, not only an intuitive explanation, but also a theoret-
ical analysis is carried out, to connect MWCE criterion to the word-
level error measure. We show that under an ideal condition, MWCE
criterion will become an estimate of the number of words being in-
correctly recognized on the training data. When the ideal condition
cannot be satis ed in practice, a smoothed word-level error measure
can still be approximated and form an applicable criterion.

We embedded our MWCE criterion into the uni ed DT criterion
proposed in [8] and [9]. Because all criteria share most of the im-
plementation details in a common framework, the uni ed DT crite-
rion can provide a fair evaluation of different criteria. We compared
MWCE criterion with string-level MMI, MCE, as well as substring-
level MWE and MPE. Experimental results on TIMIT and WSJ0
tasks suggest that MWCE not only achieves an improved perfor-
mance over conventional MCE, but also outperforms other criteria
including MMI, MWE, and MPE.

The rest of this paper is organized as follows: In Section 2, the
implementation of conventional string-level MCE in the uni ed DT
criterion is brie y reviewed. In Section 3, the proposed MWCE cri-
terion is introduced, and the relationship between MWCE and word-
level error measure will be explained. In Section 4, experimental
results of MWCE and the comparison with other DT criteria are pre-
sented. Finally in Section 5, we will draw our conclusions.

2. STRING-LEVEL MCE AND ITS IMPLEMENTATION IN
UNIFIED DT CRITERION

In order to compare conventional string-level MCE with our pro-
posed word-level MWCE, the implementation of string-level MCE
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in uni ed DT criterion is brie y reviewed here.
For the rth training utterance, MCE criterion chooses discrimi-

nant functions to form a string-level misclassi cation measure [4],
which can be formulated as:

dr = − log pθ(Xr|Wr)p(Wr)

+ log

"
1

|Mr|
X

W∈Mr

pα
θ (Xr|W )pα(W )

#1/α

,
(1)

where θ represents the set of all parameters of the emission prob-
abilities, Xr is the observation sequence, Wr the reference word
sequence, and α the weighting exponent, respectively. For MCE cri-
terion, Mr is chosen to be all possible word sequences excluding
the reference, i.e.,Mr =M\ {Wr}, and |Mr| is the total number
of word sequences inMr .

In order to approximate string error, a loss function of

L(dr) =
1

1 + e−2γ(dr+ξ)
(2)

needs to be introduced. This smoothed loss will be close to 0 if the
entire string is recognized correctly, and close to 1 otherwise. In
an extreme case when α → ∞ and γ → ∞, Eq. (2) will become
an indicator function of string error. Therefore, minimizing the sum
of this loss over all training utterances will minimize the number of
empirical string errors, which indirectly minimizes WER.

By choosing appropriate γ and ξ, an equivalent variant of the
string-level loss in Eq. (2) can be embedded into the uni ed DT
criterion [8]:

FMCE =
RX

r=1

f

 
log
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!
, (3)

where f(z) = −1/(1 + e2ρz), and ρ is a smoothing factor (note
the negative sign in f because the uni ed criterion is designed to be
maximized for parameter optimization). Following this way, MCE
criterion can be evaluated and compared with other DT criteria in a
same framework.

3. MINIMUM WORD CLASSIFICATION ERROR
CRITERION

Although conventional MCE has successfully embedded the string
based Dynamic Programming (DP) procedure during decoding into
the training process, the drawback of this method is almost obvious.
The main disadvantage is that there exists a mismatch between the
string-level criterion and word-level performance evaluation mea-
sures (e.g., WER). Minimizing string error does lead to a minimiza-
tion of word error, but this kind of optimization is quite indirect. A
new criterion which focuses on word-level error may provide a more
effective way to optimize our ultimate goal of WER.

In the following subsections, a word-level, MWCE criterion is
proposed. We aim at choosing appropriate discriminant functions,
misclassi cation measure, and loss function so that a more direct
measure of empirical word-level error can be approximated and min-
imized. Meanwhile, we will also give an investigation on the rela-
tionship between MWCE criterion and word-level error.

3.1. Word-Level MWCE Loss Function

Suppose the reference word sequence of the rth training utterance is
consisted of Nr words, i.e., Wr = {w1

r , w2
r , . . . , wNr

r }. For each

reference word wn
r , we rst de ne the correct string set MK

wn
r

and
incorrect string setMJ

wn
r

such that:

∀W ∈ MK
wn

r
, ∃w ∈W, w ≡ wn

r ;

∀W ′ ∈MJ
wn

r
,∀w′ ∈ W ′, w′ �= wn

r .
(4)

In Eq. (4), w ≡ wn
r means that we restrict the word w to have

a same label and same time alignment as the reference word wn
r .

Therefore, the correct string set MK
wn

r
will include all DP strings

that pass through a “matched” word w for the corresponding interval
of speech. Conversely, the incorrect string set MJ

wn
r

is consisted of
all strings that do not pass any “matched” word for wn

r . Obviously,
MK

wn
r
∩MJ

wn
r

= ∅, andMK
wn

r
∪MJ

wn
r

= M. So the discriminant
functions for each string set can be formulated as:

gK(θ) = log
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and

gJ (θ) = log
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|MJ
wn
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And the misclassi cation measure related to the reference word wn
r

can be written as:

dwn
r

= −gK(θ) + gJ (θ). (7)

Consequently, a loss function can be naturally chosen as:

L(dwn
r
) =

1

1 + e
−2γ(dwn

r
+ξ)

, (8)

like in the case of string-level MCE.

3.2. Relation Between MWCE Loss Function and Word Error

Firstly, let us give an intuitive explanation of the MWCE loss func-
tion in Eq. (8). The de nition of this loss is based on the nature of
the DP strategy in decoding: If a reference word wn

r is to be recog-
nized correctly, the best DP string must pass through this word for
the corresponding time frames. Conversely, if the best DP string fails
to contain wn

r in its correct position, we can say that a word-level
recognition error has occurred. Comparing with string-level MCE,
word-level MWCE focuses on, and only on a particular local interval
of the DP strings. That is to say, a string is considered to belong to
the correct or incorrect string set depending on if it contains the ref-
erence word wn

r in a given local segment. Outside that segment, any
word sequence is allowed. It can be argued that the de nition of cor-
rect strings in Eq. (4) is somewhat too strict, i.e., correct strings must
contain a word that exactly matches the reference word. Although
we follow this de nition in all of our experiments in this study, one
may loose this constraint to allow certain degree of differences in
time alignment.

Secondly, let us try to give a theoretical analysis of the MWCE
loss function. Again like in the case of string-level MCE, consider
an extreme case when α → ∞ and γ → ∞, the misclassi cation
measure in Eq. (7) will become:

dwn
r

= − log max
W∈MK

wn
r

pθ(Xr|W ) · p(W )

+ log max
W ′∈MJ

wn
r

pθ(Xr|W ′) · p(W ′), (9)
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and the loss function in Eq. (8) becomes a step function of:

L(dwn
r
) =

j
0 if dwn

r
< 0

1 if dwn
r

> 0
. (10)

Since the DP procedure in decoding will automatically choose
the string with highest probability as recognition output, for any ref-
erence word wn

r , the best DP output, say W ∗, will either belong to
MK

wn
r

orMJ
wn

r
. Therefore, depending on the sign of dwn

r
, the word-

level MWCE loss L can be discussed in the following two cases:
Case 1. dwn

r
< 0 ⇒ L = 0: In this case, the best string in

MK
wn

r
has a higher probability than the best string inMJ

wn
r
. Conse-

quently, W ∗ ∈ MK
wn

r
. Recalling how we choose MK

wn
r

in Eq. (4),
W ∗ will contain a “matched” word for wn

r by de nition. This case
means that the reference word wn

r is to be recognized correctly, and
the MWCE loss in Eq. (10) is 0 accordingly.

Case 2. dwn
r

> 0 ⇒ L = 1: In this case, W ∗ ∈ MJ
wn

r
. As a

result, W ∗ will not contain any “matched” word for wn
r . This case

means wn
r could not be recognized correctly, so the MWCE loss in

Eq. (10) will be 1.
Based on the two cases analyzed above, it is relatively easy to

see that we are trying to design the MWCE loss function so as to
approximate the number of word errors in training set. Optimizing
model parameters with respect to this word-level MWCE loss better
matches our ultimate goal of WER than string-level MCE. Please
note that the discussion above is only based on an ideal case when
α and γ → ∞. In practice, however, α and γ are usually set to
relatively smaller values (the same like in string-level MCE). This
will take more competing strings into account, which is believed to
be able to improve generalization.

3.3. MWCE in Uni ed DT Criterion

It is quite straightforward to embed our MWCE loss function into
the uni ed DT criterion. If we set γ = αρ in Eq. (8), and ξ to cancel
the number of alternative strings in Eqs. (5) and (6), a new criterion
in the uni ed form can be rearranged as the sum of smoothed word
errors on the training data:

FMWCE =

RX
r=1

NrX
n=1

f

 
log

P
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θ (Xr|W ′) · pα(W ′)

!
,

(11)

in which f(z) = −1/(1 + e2ρz) keeps unchanged as string-level
MCE. Please note again that f is a negative loss function because we
always maximize the uni ed criterion for parameter optimization.

4. EXPERIMENTS

4.1. Implementation Details

The Hidden Markov Model Toolkit (HTK) implemented a uni ed
DT criterion including MMI, MWE and MPE in its latest release
[10]. The toolkit uses an initial model trained using MLE, to gener-
ate two sets of lattices (the so called “numerator” and “denominator”
lattices) for discriminative training. Model parameters are updated
using Extended Baum-Welch (EB) algorithm [11], so the traing pro-
cess can be done in a parallel mode when a cluster of processors is
available.

We extend the HTK implementation to support conventional string-
level MCE and our proposed word-level MWCE. Because all criteria
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Fig. 1. Phone error rate on TIMIT database

Criterion MLE MMI MCE MW(P)E MWCE

PER(%) 37.24 32.20 30.13 30.95 29.06
Relative(%) - 13.5 19.1 16.9 22.0

Table 1. Phone Error Rate (PER) on TIMIT database, and relative
improvement over MLE baseline.

share most of the implementation details, we believe this uni ed DT
framework can provide a reasonably fair evaluation and comparison
of all criteria.

String-level MCE only needs to accumulate statistics once for
each training utterance. However, MWCE has to accumulate statis-
tics once for each reference word (ref. to Eqs. (3) and (11)). This
will make MWCE much more time-consuming in training than MCE.
In our implementation of MWCE, for each reference word wn

r , only
the statistics within its local interval are calculated and accumulated.
This simpli cation therefore reduces the training time to a compara-
ble level of string-level MCE.

“I-smoothing” is used in our experiments to improve generaliza-
tion. For MMI, MWE and MPE criteria, the i-smoothing factor τ is
set to the recommended values in [10]. For MWCE criteria, τ is set
according to the denominator counts, as suggested in [12]. Finally,
the weighting exponent α is set to 1/15 in all of our experiments,
with a smoothing factor ρ = 0.04 as in [9].

4.2. Experimental Results

4.2.1. Experiments on TIMIT phone recognition task

Although not being an LVCSR task, the TIMIT phone recognition
task focuses on pure acoustic modeling, and provides us an ef cient
way to evaluate new DT criteria. Our experimental conditions are
close to that of [13]. The standard 3696 training and 192 core-test
sets are used. 48 phones are chosen to train tri-phone HMMs, and
they are then folded to 39 phones when calculating results. We ob-
tain a total number of 990 tied-states in our system, and each state
is modeled using an 8-component Gaussian mixture. A phone-loop
network is used in decoding (no language model used). The phone
recognition accuracy of the initial MLE model is 62.76%, which is
comparable with [13].

For discriminative training, the “numerator” lattices are obtained
according to manual labels. The “denominator” lattices are gener-
ated using the same network in decoding. Because of the phone
recognition task, MWE criterion becomes equivalent to MPE, and
MWCE is actually conducted on phone-level.
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Fig. 2. Word error rate on WSJ0 Nov’92 5k evaluation

Criterion MLE MMI MCE MWE MPE MWCE

WER(%) 4.89 4.24 4.48 4.00 4.11 3.77
Relative(%) - 13.3 8.4 18.2 16.0 22.9

Table 2. WER on WSJ0 Nov’92 5k evaluation, and relative im-
provement over MLE baseline.

The phone recognition error rates of each iteration for the ve
criteria are shown in Fig. 1. We also compared the best recognition
performance for each criterion, as given in Table. 1. The experimen-
tal results suggest that MCE and MWCE criteria outperform other
three criteria on this task. And the proposed word-level MWCE cri-
terion can achieve an improved performance over string-level MCE,
with a relative error rate reduction of 22.0%.

4.2.2. Experiments on WSJ0 Nov’92 5k evaluation

To evaluate our MWCE criterion on an LVCSR task, experiments
are carried out on WSJ0 database. The training corpus is SI-84 set,
with 7133 utterances from 84 speakers. Evaluation is performed on
standard Nov’92 non-verbalized 5k closed vocabulary test set, with
330 utterances from 8 speakers. The training setups are similar to the
WSJ HTK recipe proposed in [14] (a system that performs similar
to [15]). Cross-word tri-phone HMMs with a total number of 2774
tied-states are trained, and each state has 8 Gaussian components.
The WERs of the MLE baseline using standard bi-gram and tri-gram
language models are 7.34% and 4.89%, respectively. These results
are comparable with the numbers reported in [14].

For discriminative training, a weakened, uni-gram language model
is used to generate lattices. The recognition performances of the ve
criteria when decoded using the standard tri-gram language model
are given in Fig. 2 and Table. 2. We observe that MWE outperforms
MPE on this task, which is consistent with [3]. String-level MCE
only achieves a relative error rate reduction of 8.4% on this task,
which is much lower than that of MMI, MWE, and MPE. Compar-
ing with other criteria, our proposed MWCE criterion again achieves
the best recognition performance, with a relative error rate reduction
of 22.9%.

5. CONCLUSIONS AND FUTURE WORK

We proposed a new discriminative training criterion MWCE in this
paper. By localizing conventional string-level MCE loss function to
word-level, a more direct objective which better matches the perfor-
mance evaluation measures (such as WER) can be derived. Both

intuitive explanation and theoretical analysis were carried out in this
study, to investigate the relationship between MWCE criterion and
word classi cation error. Finally, MWCE was embedded into the
uni ed DT criterion and evaluated with other commonly-used crite-
ria. Experimental results on TIMIT and WSJ0 tasks suggested that
consistent performance improvement can be obtained by MWCE
over conventional string-level MCE. MWCE also outperformed MMI
and other substring-level criteria MWE / MPE, on the above two
tasks. To evaluate MWCE criterion on larger and more dif cult tasks
will be our future work.
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