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ABSTRACT
Total laryngectomy is often the treatment of choice for

many patients suffering from laryngeal cancer. This pro-

cedure alters the speech production mechanism, and tra-

cheoesophageal (TE) speech is an alternative where the

pulmonary air is forced through the esophagus. TE speech is

often characterized by poor intelligibility and voice quality.

Acoustic analysis of TE speech has the potential of quanti-

fying the voice quality and assisting the speech pathologist

in determining and monitoring the therapy process. In this

paper, we apply two different methods for predicting the

voice quality ratings of TE speakers by naive listeners: (a)

conventional spectral and linear prediction measurements

that were investigated in earlier studies, and (b) a method-

ology based on a perceptual auditory model that attempts to

mimic the speech quality perception by a normal hearing

listener. Experimental results with a database of 35 TE

speakers showed that the auditory-model based approach

significantly outperforms the traditional methods.

Index Terms— vocal system, speech analysis, linear

prediction coding, auditory system

I. INTRODUCTION
Measurements of voice and speech quality are important

during the assessment, treatment, and monitoring of talkers

with abnormal voices. Speech quality measurements can be

subjective or objective. Subjective analysis involves having a

group of listeners rate the quality of the speech sample based

on how natural it sounds, or how much effort is required for

it to be understood. Subjective ratings are well known to

be the gold standard for speech quality, however they suffer

from being time consuming and expensive. Objective mea-

sures are often desired, as they use mathematical equations

and physical models to predict the speech quality.

A speech abnormality can be the result of any number

of factors such as disease or injury. The focus of this

paper is on a particular type of pathology known as tra-

cheoesophageal speech. Tracheoesophageal (TE) speech is

a surgical-prosthetic method of voice restoration following

surgical removal of the larynx. Voice restoration through TE

puncture involves surgical creation of mid-line puncture in

the common wall between the trachea and the esophagus [1].

This puncture is then stented with a small one-way valved

prosthesis. When the airway is sealed, the TE puncture

prosthesis permits pulmonary air to flow from the airway

to the esophageal reservoir. Once air fills the esophageal

reservoir, it vibrates muscular tissue of the upper esophagus

and lower pharynx and this intrinsic, alaryngeal voice source

is transmitted into the vocal tract where it is articulated into

speech. TE speech is characterized by a generally lowered

frequency, near normal intensity, and because of access

to the large volume of pulmonary air, generally normal

temporal features when compared to normal speakers [2].

However, the overall sound quality of TE speech is best

described as highly aperiodic, rough, and noisy. Additionally,

considerable variability across TE speakers does exist [3].

Therefore measurements of TE speech quality are often

useful in TE speech rehabilitation process.

In this paper, we investigated different methods that

predict the subjective speech quality ratings of TE speech.

A novel contribution of this paper is the incorporation of

an auditory model into the prediction process. A validated

psychoacoustic model based on Moore and Glasberg’s work

[4] was used, and our results showed that this approach

provides significantly improved correlation with subjective

quality ratings of TE speech.

II. LINEAR PREDICTION ANALYSIS

Previous studies on TE speech analysis have looked at

several different temporal and spectral parameters. One of

the most powerful speech analysis techniques is the linear

predictive (LP) modeling for its accurate estimates of speech

parameters. Several studies [5], [6] have shown that LP-

based metrics provide very good classification accuracy and

correlate well with subjective ratings for normal speech.

Parsa et al. [5] demonstrated that measures based on LP

modeling of vowel samples were superior to other glottal

measures in classifying pathological voices. Perhaps not
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directly related, but Grancharov et al. [6] have shown that

statistical quantities derived from linear prediction spectrum

analysis are useful in non-intrusive estimation of the speech

coder quality. Thus, our initial study concentrated on the

analysis of continuous TE speech samples using the global

statistical properties of the per-frame feature vector[6].

The per-frame power spectrum is initially calculated based

on the LP coefficients ak

P (ω) =
1

| 1 +
p∑

k=1

ake−jωk |2
(1)

from which three features are calculated, viz. Spectral Flat-

ness Φ1(n), Spectral Dynamics Φ2(n), and Spectral Cen-

troid Φ3(n). The Spectral Flatness Ratio (SFR)

Φ(n) =
exp( 1

2π

∫ π

−π

log(Pn(ω))dω)

1
2π

∫ π

−π

Pn(ω)dω

(2)

measures the distribution of frequencies in the spectrum. A

0 dB SFR results from a flat spectrum consisting mainly of

noise. The output moves further away from 0 dB when the

spectrum contains peaks and valleys [7]. The second feature

used was the Spectral Centroid (SC)

Φ3(n) =

∫ π

−π

ωlog(Pn(ω))dω

∫ π

−π

log(Pn(ω))dω

(3)

which defines the frequency region containing most of the

signal energy. The final feature studied was the Spectral

Dynamics(SD)

Φ2(n) =
1
2π

∫ π

−π

(logPn(ω) − logPn−1(ω))2dω (4)

which captures the frame-to-frame difference in the spectral

density values.

III. AUDITORY MODEL

In order to better predict the subjective ratings, a vali-

dated psychoacoustic model was applied. The psychoacous-

tic model provides a way to link the physical acoustical data

to the perceptual data by extracting perceptually relevant

features [8]. Several models for auditory perception do exist

but the Moore-Glasberg (MG) model [11], [10], [4], has been

recently shown to be a more accurate revision of the earlier

auditory models. The M-G model allows the computation of

perceived loudness patterns which can be assimilated to form

indices of voice quality. The computation of the loudness

patterns is achieved through a series of steps and these are

briefly explained below.

The level normalization step involves setting the Sound

Pressure Level (SPL) of the input signal to a fixed level of

79dB [8], which represents a level to which most listeners

have the best quality response. The next step in the process

is converting the normalized signal into the time-frequency

domain using the Short-Term Fourier Transform (STFT).

The speech signal was divided into frames of 32ms length

with 50% overlap. The power spectrum of each frame was

calculated by taking the STFT and then squaring the real

and imaginary components. Once the power spectrum is

calculated the weighted power spectrum can be obtained as

Pw(i, k) = H(k) ∗ P (i, k) (5)

where i is the frame number and k represents the frequency

scale. The frequency dependent weighting function which

models the outer and middle ear is [12]

H(k) = 10
6.5exp(−0.6( f(k)

1000 − 3.3)2)
20

−10−3 ( f(k)
1000 )3.6

20
+ 10

−2.184( f(k)
1000 )−0.8

20
(6)

Here f(k) = k 8000
256 . The weighted power spectrum was used

to calculate the excitation pattern

E(fc) =
∫ ∞

0

φ(f, fc, Pw)Pw(f)df (7)

φ(f, fc, Pw) is the auditory filter. The excitation pattern

was used to represent the output level of each auditory

filter as a function of each respective center frequency [8].

The excitation pattern was transformed into the associated

loudness pattern.The loudness pattern is more closely related

to the subjective perception of the speech. Using the MG

model the loudness patterns can be calculated for three

different cases [4], [8]:

Case1 : IF (109 ≥ E(fc) ≥ ETH(fc))
N(fc) = C[(G(fc)E(fc)E(fc) + A(fc))α(fc)

−A(fc)α(fc)] (8)

Case2 : IF (E(fc) > 109)

N(fc) = C[
E(fc)
1.115

]0.2 (9)

Case3 : IF (E(fc) < ETH(fc))

N(fc) = C(
2E(fc)

E(fc) + ETH(fc)
)1.5

[(G(fc)E(fc) + A(fc))α(fc) − A(fc)α(fc)] (10)

The variables used in the loudness pattern calculations

are shown in Table I. The loudness patterns are summed

across frequency to form the overall loudness pattern of each

speech frame. Eight separate distance metrics were computed

from the loudness pattern differences, each with a unique
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Table I. LPD variables
Variable Meaning

E excitation patterns produced by signal
ETH excitation patterns in quiet
G(f) low level gain of cochlear amplifier
A(f) constant to determine the level dependence

of loudness compression
C scaling constant = 0.047

α(f) compression exponent

frequency weighting scheme [8]. It has been shown, using

a database of speech coder quality ratings, that the loudness

pattern distortion (LPD) between the loudness patterns of the

input (reference signal) and output (test signal) of a speech

coder is a good predictor of the speech coder quality [8]. In

this paper, we applied the LPD measurement procedure to

the TE speech samples, by selecting the speech sample with

the best subjective rating as the reference and all the other

speech samples as test samples.

IV. RESULTS
The speech samples were gathered from thirty-five adult

males between the ages of 45-65 years. All had undergone

total laryngectomy and TE puncture at least one year prior to

their participation. All recordings were gathered in a sound-

treated environment using stereo recordings at 44.1kHz

sampling rate with 16-bit quantization. The sentence The
rainbow is a division of white light into many beautiful
colors was recorded from all the speakers and used for

acoustic and perceptual measurements.

The TE speech samples were played back to a group of

37 naive listeners who had no prior exposure to TE speech.

The signals were played back in a random order and the

listeners were instructed to rate the overall perceived quality

on a scale of 1 to 10. The average of listener ratings was then

used to determine the speech sample with the best perceptual

rating and in the computation of correlation coefficients

between objective and subjective ratings.

For the acoustic analysis portion, the speech signals were

down-sampled to 8 kHz, and both the linear prediction

spectral measures and the LPD values based on the Moore-

Glasberg model were computed. Figures 1 and 2 show

the loudness patterns for the reference signal (high quality

subjective rating) and one of the test signals respectively.

A substantial difference between the two patterns is quite

evident in these figures.

Table II displays the correlation coefficients between

the LPC spectral metrics and the subjective quality ratings.

Only those features that demonstrated significant correlations

were reported in this table. Even then, the magnitude of

the correlation coefficients is quite low indicating a poor

predictability performance by spectral metrics. Table III

displays the correlation coefficients of the auditory model

based distance metrics with the subjective data.Two distance

Fig. 1. Loudness patterns of reference speech signal

Fig. 2. Loudness patterns of test speech signal

metrics were calculated. One based on the overall difference

between the loudness patterns of each frame and the other

based on the specific loudness of each frame.

D1 =
1
N

N∑
i=1

[Lx(i) − Ly(i)] + Loffset (11)

D2 =

√
1
N

∑N
i=1

(∑M
u=1 [Nx(i, u) − Ny(i, u)]2

)
√

1
N

∑N
i=1

(∑M
u=1 [Nx(i, u)]2

) (12)

Loffset is an offset constant and N is the number of speech

frames.The results in table III are for two versions of the

speech samples. The “original” row reports the data obtained

by processing the unmodified samples, while the “processed”

row reports the data when the reference and test signals have

been subject to an energy threshold based Voice Activity

Detector (VAD). The best correlations were observed on the

first two distance metrics of the processed speech signal.

For the “original” case however, a correlation of 0.79 was
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achieved by a linear regression analysis using D1 and D2
distance metrics.

Table II. Significant acoustic feature results
Feature Statistic Correlation

SF Mean 0.23
Variance 0.28

SD Mean 0.23
Skewness 0.28

SC Mean 0.20
Kurtosis 0.26

Table III. Significant auditory model correlations
Signal Distance measure Correlation value

Original Signal D1 -0.69
D2 -0.18

Processed Signal D1 -0.73
D2 -0.73

Figure 3 depicts the scatter plot between the objective

(D1) and subjective ratings of the quality of TE speech. It

can be seen from the plot that the higher the perceptual

quality score, the lower the distance measure. This is to be

expected as more distorted the test signal becomes, the lower

its quality will be, making its distance further away from the

high quality reference signal.
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Fig. 3. Scatterplot of subjective rating vs. distance

V. CONCLUSIONS
Objective quality measurements are a valuable tool to

speech pathologists in guiding patients to improve their

speech. This paper has demonstrated the fact that typical

spectral metrics extracted from running speech samples do

not correlate well with perceptual subjective data of TE

speech samples. Psychoacoustic models however, are better

suited for modeling perceptually rated data. The proposed

method uses the Moore-Glasberg loudness model to compute

the LPD distances from the feature matrix. We showed that

good correlation results could be obtained using this model

for the TE database. Since we have not explicitly defined

the distortion model, the algorithm can be extended towards

future quality assessment of TE speakers.
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