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ABSTRACT

While the ”*quasi-state-of-the-art”” towards acoustic emotion re-
cognition relies on multivariate time-series analysis of e.g. pitch, en-
ergy, or MFCC by statistical functionals as moments or extrema,
only few respect statistical noise by outliers due to too long segments
as turns. Such noise can be overcome by hierarchical functionals
as means of extrema over smaller units as words or chunks. Seg-
mentation of such units however usually relies on transcription. We
therefore discuss hierarchical functionals based on automatic seg-
mentation and their systematic generation as opposed to common
expert-driven selection. To cope with rapidly growing feature spaces
Sk, we discuss data-driven two-stage compression based on SVM-
SFFS. Extensive test-runs are carried out on two known emotion and
behavior corpora, and show superiority of the suggested approach.

Index Terms— Emotion Recognition, Affect Recognition, Hi-
erarchical Functionals, Feature Brute-Forcing, Feature Selection.

1. INTRODUCTION

The state-of-the-art approach towards acoustic emotion recognition
is derivation of statistic functionals as mean, standard deviation, or
extrema from a low-level-descriptor such as pitch, energy, or MFCC
coefficients [1, 2, 3, 4]. This resembles a strong reduction of infor-
mation, and allows for generalization in view of independence of
spoken content. Mostly, such functionals are thereby derived over a
whole turn of speech. However, such descriptive statistical analysis
becomes prone to outliers with increasing unit length. To overcome
this problem, more recent works often base on hierarchical function-
als such as mean of extrema over consecutive smaller units, as words
[3, 2], yet mostly relying on word boundaries by transcription. Also,
these features are not generated in a systematic way, but rather by
expert-knowledge. In this work we therefore aim at answering two
questions: can we base hierarchical functionals on less intelligent
pre-segmentation compared to word boundaries, more concretely ab-
solute or relative time intervals, which can be carried out robustly?
And, is brute-forcing of hierarchical functionals, which easily re-
sults in very high initial feature spaces ;5k reasonable, or, put more
straight forward: worth the effort? Such high dimensionality is how-
ever not intended for the actual classification. Moreover, we will use
two-stage feature space compression to cope with high dimension-
ality while providing close-to-optimal set optimization at high de-
correlation level, yet preserving most relevant features. To answer
these questions we will introduce a set of base-level-functionals and
features, explain segmentation and hierarchical functionals, and dis-
cuss extensive test-runs on two known data-sets in the ongoing.
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2. FEATURES AND FUNCTIONALS

For every acoustic signal frame at 100 fps various features in the
time as well as in the frequency domain are extracted. These will be
denoted as low-level-descriptors (LLD). Selected LLD for this work
aim at broad coverage of typical prosodic, spectral and cepstral, as
well as voice quality features as found in [3, 4]. At the same time the
basis for systematic feature generation shall be kept compact. Table
1 gives an overview of used LLD, herein.

Type Abbreviation LLD

Time Signal T Elongation, Centroid, ZCR

Energy E Log-Frame-Energy

Spectral S 0-250 Hz, 0-650 Hz, Flux
Roll-Off + §, Centroid +

Pitch P FO

Formants F F1-7 Frequ. + §, BW. + §

Cepstral C MFCC 1-15+§ + 60

Voice Quality \ HNR

Table 1. Overview acoustic LLDs.

Next, functionals of LLD are calculated. Formally, a functional
is a mapping of a function space to a number:

f: F—-% 1)

These functionals can then be used for static classification, e.g. by
Support Vector Machines (SVM), as they describe the function of the
change of features over time. Functionals in this work are typical sta-
tistical characteristics of LLD such as mean, median, minimum and
maximum position and value, and standard deviation. We preferred
simple over complex, following the findings presented in [4]. To
better model changes over time of LLD, these functionals are also
applied on speed () and acceleration (d0) regression coefficients. In
total, a feature set dimension of 622 is obtained by application of se-
lected functionals to the introduced LLD. These will be denoted as
base-level-functionals in the ongoing. While this number seems high
already, it will be increased by a factor of up to ten in the ongoing.
However, the aim is to provide a broad basis for feature selection
rather than to actually classify emotions in a running engine by 5k
features. Likewise, we choose the popular Sequential Floating For-
ward Search (SFES) [5, 1] for feature space de-correlation at highest
accuracy levels. SVM are used as wrapper, denoted as SVM-SFFS.
Note that spaces will always be compressed to maximum accuracy
by SVM in the ongoing. We use polynomial kernels and pair-wise
multiclass discrimination.
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3. SEGMENTATION OF AUDIO FILES

The performance of emotion classification highly depends on the
information content of the functionals extracted by the feature ex-
tractor. As one functional can give only a very raw description over
time, the idea is to divide the whole audio signal at analysis into
several parts and extract base-level functionals for every part. Af-
ter extraction all resulting functionals for every part of the audio file
are joined together to form one combined feature vector - that is su-
per vector. To keep segmentation schemes as simply computable
as possible with respect to real-time processing, effectiveness and
robustness, no dynamic segment boundaries (prone to error them-
selves) like words are used. Note however that e.g. voiced segments
or pause/non-pause are almost equally derived, yet not considered,
herein. In addition to the whole audio signal which can be seen as
one segment and will be denoted as global time interval (GTI), two
further segmentation schemes were investigated:

e Absolute Time Intervals (ATI)
e Relative Time Intervals (RTI)

These segmentation schemes are discussed in this section.

3.1. Absolute Time Intervals

In this segmentation scheme the audio stream is split up into frames
with fixed size, e.g. 500 msec. In general this allows for incremental
emotion recognition or easy fusion with other modalities as video,
that operate on fixed frame rates (cf. [6]). Depending on the length
of audio samples at analysis, accordingly a variable number of seg-
ments is generated. On its own, this demands special requirements to
the classification algorithm as time warping by e.g. Hidden-Markov-
Models or Dynamic Bayesian Networks, or Multi-Instance Learn-
ing. Figure 1 visualizes this scheme for two symbolic audio files
with different length.

Fig. 1. Schematic view of Absolute Time Intervals (ATI) segmenta-
tion.

3.2. Relative Time Intervals

In this segmentation approach, the audio signal is divided into a fixed
number of segments, as halves, thirds, etc. Therefore, the number of
extracted functionals is constant for every analyzed audio file and all
classification algorithms for a static number of input vectors can be
used as more common in the field of acoustic emotion recognition.
As ATI, this segmentation scheme leads to a better modeling of the
function described by the functionals. Again, functionals for every
segment and for the whole audio file can be composed into a super-
vector. Figure 2 accordingly visualizes the segments, the functionals
are calculated for. The number of segments is therein set to three and
segmentation for two audio files with different lengths is shown.

Note that also mixed forms as Absolute Time Intervals at Rela-
tive Positions are an option, as discussed in [6]. However these will
not be followed, herein.
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Fig. 2. Schematic view of Relative Time Intervals (RTI) segmenta-
tion.

3.3. Hierarchical Functionals

Apart from adding sub-turn entity, that is segmental features, to a
super-vector as described before and shown in [6], we now calculate
functionals of functionals. Looking at the effect of e.g. segmenta-
tion according to the RTI scheme, the change of functionals is repre-
sented only by the different values of functionals for each segment.
The description of the function of a functional by its statistic proper-
ties as described further increases the feature information, and allows
for static modeling in the case of ATI: the problem of the ATI scheme
was that the resulting feature vectors had variable lengths related to
the lengths of the whole audio sample. Calculation of functionals
of the function of segment’s functionals provides an elegant solution
here: by dumping the values of functionals for each segment and
keeping only the functionals calculated for their change one static
vector is obtained.

In detail, first a segmentation as described by the ATI scheme or
the RTI scheme is performed. Then a set of default functionals are
calculated for every functional of the segments: in order to keep the
feature space limited considering systematic hierarchical functional
brute-forcing and the original space size of 0.6k, we decided for a
limited set of only 7 hierarchical functionals. Again, we preferred
simple over complex, as first two statistical moments over higher
ones, following the findings in [4]: mean, median, standard devia-
tion, position and value of extrema are used.

4. DATABASES

4.1. Berlin Emotional Speech

The Berlin Emotional Speech Database [7] (known as EMO-DB) is
an audio only database of German emotional utterances spoken by
10 professional actors (5 female). The recordings took place in the
anechoic chamber of the Technische Universitit Berlin. For each
of 7 emotions as seen in Table 2 10 sentences of emotionally neu-
tral content were spoken be each speaker. Overall 896 datasets were
recorded. The database was independently annotated by 20 people
with respect to naturalness and assignability. For our experiments
only the datasets with ;60% of the annotators agreeing upon natu-
ralness and ;80% upon assignability to an emotion where chosen in
accordance to other works. This final class distribution is shown in
Table 2.
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[#] 127 79 38 55 58 78 53 488

Table 2. Distribution of emotions, database EMO-DB.



4.2. Airplane Behavior Corpus

The Airplane Behavior Corpus (ABC), introduced in [8], is a databa-
se crafted for the special target application of public transport surveil-
lance, consisting of elicited behavior. There is a broad discussion in
the community with respect to acted vs. spontaneous data, which we
will not address herein. However, it is believed, that mood induc-
tion procedures favor realism in behavior. Therefore a script was
used, which lead subjects through a guided storyline. 8 subjects in
gender-balance from 25 a to 48 a (mean 32 a) took part in the record-
ing. The language throughout recording is also German, and a total
of 11.5h video was recorded and annotated independently after pre-
segmentation by three experienced male labelers within a closed set
as seen in Table 3. This table also shows the final distribution of
samples with total inter-labeler-agreement. The average length of
the 396 clips in total is 8.4s.

Table 3. Distribution of behaviors, database ABC.

5. RESULTS

In the research of behavior or emotion recognition data is usually
sparse. As most popular evaluation strategy j-fold stratified cross
validation (SCV) can therefore be named: SCV allows for testing
and disjunctive training on the whole corpus available. We there-
fore use 10-fold SCV in the ongoing and present mean accuracies
throughout cross-folds.

In our first experiment with hierarchical functionals, features
were extracted in the common way for the whole sequence (GTI),
as well as for its thirds according to the RTI segmentation scheme.
Then, the default hierarchical functionals named in sect. 2 were cal-
culated for every base-level-functionals of the three parts. With the
622 functionals for the whole sequence, the 3 - 622 functionals of
each part and the 7 - 622 hierarchical functionals, the resulting com-
bined feature vector has a dimensionality of 6842. Considering high
computational demand of the very effective SVM-SFFS, dimension-
ality had to be pre-reduced. Therefore, the SFFS algorithm was first
applied to the original global 622 functionals on the first layer. Then,
functionals for the three parts and hierarchical functionals for the 200
best features were taken out and recombined to form a new data vec-
tor, still containing the 200 functionals of the whole sequence, 3-200
functionals for every part and 7 - 200 functionals for the hierarchical
functionals. Thus, it had an overall dimensionality of 2200. Then
SFFS was repeatedly applied on the hierarchical layer.

Next, the performance of the hierarchical functionals according
to the ATI segmentation scheme is considered. Again, the base-
level functionals introduced before were extracted for every audio
file. Further, every audio sequence was divided into sub-segments
all having a length of 0.5 sec. All 622 functionals were extracted for
every sub-segment and functionals of these functionals were calcu-
lated. Therefore, the resulting data vector is consisting of the 622
functionals of the whole sequence and the 7 - 622 hierarchical func-
tionals. Thus, the overall dimensionality is 4976.

Table 4 shows the classification results with 10-fold SCV for the
EMO-DB.
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Scheme Functionals All Features Optimized Set

GTI 1 79.7% 90.4%
(622) (154)

RTI 3RTI+GTI+HF 78.5% 92.6 %
(6842) (480)

ATI GTI+HF 80.1% 92.4%
(4976) (795)

Table 4. Results for hierarchical functionals (HF) with RTT and ATI
segmentation on EMO-DB, SVM, 10-fold SCV. Feature numbers [#]
are provided in ().

Interestingly, the RTI and the ATI segmentation scheme with
hierarchical functionals are performing nearly equally although the
RTT feature vector contains functionals for every of the three frames
in addition to the functionals of the whole sequence and the hierar-
chic functionals. By contrast, the ATI feature vector contains only
the functionals of the whole feature vector and the hierarchical func-
tionals. This may indicate that most of the important information for
each sub-sequence can be described by hierarchical functionals.

Table 5 shows classification accuracies for different numbers of
features. As described, the according number indicates the amount
of best performing features given by the SFFS algorithm. At the
beginning, a relatively strong increase can be seen while the accu-
racy keeps nearly constant for higher feature dimensions. But the
ATI scheme seems to contain more information in the first 200 fea-
tures than the RTI scheme. The accuracy difference is about 2%.
For higher feature dimensions, the results are nearly equal. The sta-
bility of classification rates for higher feature dimension indicates a
saturation of feature information.
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Table 5. Accuracy over space dimension by SVM-SFFS for RTI and
ATT and hierarchical functionals. EMO-DB, SVM, 10-fold SCV.

Our next results base on the ABC database in accordance to
the settings for EMO-DB. Note that the average sequence length
is rather long for the ABC database. Thus, finer temporal mod-
eling by hierarchical functionals of segments according to the ATI
segmentation may be beneficial compared to the RTI scheme: with
the RTI segmentation, a fixed number of segments with a dynamic
length was created. On databases with short sequences an almost
equal number of segments will be created with the ATI and the RTI
segmentation scheme with a low number of segments. Hence, the
results for ATI and RTI are nearly similar for short sequences. But
for longer sequences, one segment of the RTI scheme contains no-
ticeably more information and the common statistical description by
functionals becomes inexact. In contrast, the modeling of the se-
quence of functionals with a significantly higher number of segments



should lead to a considerable increase of classification accuracy due
to better smoothing of outliers. For the ABC database, the ATI seg-
mentation scheme with a segment length of 0.5 sec leads to an aver-
age number of 17 segments per audio sample.

Scheme Functionals All Features Optimized Set

GTI 1 53.9% 71.1%
(622) (190)

RTI 3RTI+GTI+HF 55.2% 75.4%
(6842) (290)

ATI GTI+HF 73.4% 80.0%
(4976) 277)

Table 6. Results for hierarchical functionals (HF) with RTI and ATI
segmentation on the ABC database. Feature numbers [#] are pro-
vided in ().

As can be seen in Table 6, the ATI segmentation scheme is
clearly outperforming the other segmentation schemes. Interestingly,
even for the unoptimized set of features it shows an impressively
higher classification accuracy. The increase in comparison with GTI
is about 10% absolute. By having a closer look at the features se-
lected by the SFFS algorithm, it can be seen that 81% of the func-
tionals used in the optimal set are hierarchical functionals. Figure 3
shows the contribution of the different types of features to the op-
timized feature set. Note that the high percentage of for example
MFCC features likely results from the high number of derived func-
tionals of this type. More interestingly, Figures 7 and 7 reveal the
percentage of the three different kinds of functionals. For the RTI
scheme these are global, the subsequences’, and hierarchical func-
tionals. It can be seen that hierarchical functionals are mostly supe-
rior to the other kinds of functionals in terms of presence after selec-
tion. This can also be seen in Figure 8, based on the optimized set for
the ATI segmentation scheme. Due to the lack of subsequence func-
tionals, the dominance of hierarchical functionals is even stronger
than for the RTI segmentation scheme, here. Interestingly, most fea-
ture types show similar behavior with respect to distribution among
global and hierarchical features. The segmental features present in
RTI seem to be equally ~‘absorbed™ in the ATI case.

(%]
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Fig. 3. Contribution of feature types to the optimized feature set. For
abbreviations see Table 1.

Rel. Frequ. [%] T E S P F CcC Vv
global 4 50 5 20 14 17 8
segmental 0 0 24 60 22 15 46
hierarchical 8 50 71 20 64 68 46

Table 7. Comparison of the contribution of global, segmental, and
hierarchical functionals to the optimized set by SVM-SFFS by fea-
ture group. ABC database, RTI-segmentation scheme.
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Rel. Frequ. [%] T E S P F C \%
global 14 66 18 0 18 20 0
hierarchical 8 33 82 100 82 80 100

Table 8. Comparison of the contribution of global, segmental, and
hierarchical functionals to the optimized set by SVM-SFFS by fea-
ture group. ABC database, ATI-segmentation scheme.

6. CONCLUSION AND OUTLOOK

Within this paper we presented brute-forcing of hierarchical func-
tionals for acoustic emotion recognition based on absolute and rel-
ative time intervals for simple but fast and robust pre-segmentation.
Thereby absolute time intervals pre-dominate in the case of longer
segments as turns. Two-stage compression of the generated large
spaces by SVM-SFFS was shown to highly boost accuracies. Like-
wise even such straight-forward segmentation helps to improve over
turn-segmentation. As space optimization has to be carried out only
once prior to recognition in an application setting, the second initial
question also clearly has to be answered positively: the (low) extra
effort of hierarchical functional brute-forcing seems worth the effort.
Future research will deal with other databases such as AIBO [3,
4] and hierarchical functionals based on ASR-based word-boundary
detection in comparison to the strategies discussed, herein.
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