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ABSTRACT

Previous work in detection of deceptive speech has largely

focused on prosodic, vocal tract, and lexical features. Glot-

tal waveform features have been shown to be useful discrim-

inators for various types of speaker affect and warrant fur-

ther study within the context of deception detection. This pa-

per reports on speaker-dependent machine learning and fea-

ture selection experiments for classifying deceptive and non-

deceptive speech using a large number of statistical features

derived from the glottal waveform. We present current results

comparing the classification performance and selected fea-

ture sets across 19 speakers from the Columbia-SRI-Colorado

corpus of deceptive speech and discuss directions for future

work.

Index Terms— Speech Analysis, Feature Extraction

1. INTRODUCTION

The growing focus on security as a worldwide problem has

stimulated the development of technology that can detect po-

tential threats in an objective and non-intrusive manner. One

area of interest is the ability to automatically detect willful

deception, with the speech modality being particularly valu-

able since it is ubiquitous and easily collected. Several Voice

Stress Analyzers (VSA) have been implemented by law en-

forcement [1] based on a theory known as “vocal tremor”;

however, no single tool has been developed that is capable of

directly identifying deception. Instead, the detection of will-

ful deception is based on the interpretation of an increase in

perceived stress in a subject. In light of this, the work pre-

sented here reflects an effort to carefully identify ways to mea-

sure this stress in speech and correlate it to known instances

of willful deception.

Several recent studies using the Columbia-SRI-Colorado

(CSC) corpus of deceptive speech have explored the possibil-
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ity of automatic deception classification using lexical, prosodic,

and MFCC features: Gracierena et al. [2] trained a classifier

with a combination of MFCC and prosodic features from a

pool of 32 speakers, obtaining 64.4% accuracy out of a base-

line (chance) score of 60.4%, while Hirschberg et al. [3]

obtained 62.8% accuracy out of a 60.2% baseline using a

combination of lexical and prosodic features, with a further

improvement of 3.6% when speaker-dependent features and

gender were used. Enos et al. [4] obtained a much improved

accuracy of 61.9% out of a 50% baseline when classifying

global lies (Section 2) in the corpus using “critical segments”

of speech. The results in [3] are consistent with the observa-

tion by Ekman et al. [5] that there may be significant differ-

ences in the cues elicited by individual subjects during decep-

tion.

To our knowledge, no previous studies have attempted to

classify deceptive speech using features derived from the glot-

tal waveform. However, glottal waveform features have been

shown to be useful discriminators for other types of speaker

affect, including stress and styling [6, 7], simulated emotion

[8], and depression [9]. These results suggest that there may

be significant differences in vocal fold vibration during de-

ceptive and non-deceptive speech that cannot be completely

characterized by pitch information and motivate the study of

glottal waveform features for deception classification. This

paper reports on speaker-dependent machine learning and fea-

ture selection experiments for classifying deceptive and non-

deceptive speech from the CSC corpus using a large num-

ber of statistical features derived from the glottal waveform.

The paper is organized as follows: In Section 2 the CSC cor-

pus is briefly described. The glottal waveform estimation and

feature extraction procedure is described in Section 3. Clas-

sification and feature selection experiments are described in

Section 4. Results are discussed in Section 5 and conclusions

are presented in Section 6.

2. THE CSC DECEPTION CORPUS

The Columbia-SRI-Colorado (CSC) corpus [3] contains de-

ceptive and non-deceptive speech from 32 native speakers of
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Standard American English in an interview setting. Intervie-

wees were given a set of tests and later told that their perfor-

mance in certain test sections did not match the target profile,

but that the study also sought subjects who could deceive the

interviewer. They were told that successful deceivers would

qualify for an additional $100. Thus, the interviewees were

under a financial and ‘self-presentational’ incentive to deceive

the interviewer. The veracity of each statement made dur-

ing the interview was indicated by pressing one of two pedals

hidden beneath the table. This interview procedure resulted

in the production of two kinds of lies: Global lies describe

the speaker’s overall intention to deceive with respect to their

performance in a particular test section, while local lies refer

to individual deceitful statements made to support the overall

argument. The interviews lasted between 25 and 50 minutes,

and the corpus contains about 7 hours of subject speech. The

interviews were recorded into digital audio tape using a high-

quality head worn microphone and downsampled to 16 kHz.

The contents of the corpus are fully described in [3].

3. GLOTTAL FEATURES

The glottal waveform is defined as the volume velocity of air-

flow at the back end of the vocal tract. An estimate of the

glottal waveform may be obtained from the speech signal via

inverse-filtering techniques, which attempt to estimate and re-

move the effects of vocal tract resonances. From these esti-

mates, 13 time and frequency-domain glottal parameters were

computed at the frame level. Each parameter was then sub-

jected to a set of 10 statistical measures across the frames of

each continuous voiced section, producing a large set of sta-

tistical features that were used for classification.

Feature extraction proceeded as follows: First, the VOICE-

BOX [10] implementation of the RAPT pitch estimation algo-

rithm was used to segment the speech in the CSC corpus into

continuous voiced sections. The vo bias parameter was man-

ually adjusted between -0.4 and -0.6 on an individual speaker

basis so that only strongly-voiced speech frames were se-

lected, as verified by auditioning the speech tagged as voiced

and unvoiced. The length of the extracted voiced sections var-

ied between 70 ms and approximately 2 seconds, with a mean

length of 255 ms.

Glottal closure instants (GCI’s) were obtained using the

DYPSA algorithm [11]. Voiced sections were divided into

50%-ovarlapped frames of length equal to 3.5 times the mean

pitch period across the entire voiced section, but restricted to

values between 20 and 40 ms. Glottal waveform estimates

were obtained for each frame using the Rank-Based Glottal

Quality Assessment (RBGQA) algorithm [12], which com-

bines four glottal estimate quality measures to find the opti-

mal analysis window position for deconvolution via the co-

variance method of linear predictive analysis (LPA). An LPA

order of 14 was used throughout.

To explore a wide range of potential deception cues in the

Table 1. Glottal Waveform Parameters
aq Amplitude quotient

clq Closing quotient

H1-H2 Difference between 1st and 2nd glottal formants,

in dB

hrf Harmonic richness factor

naq Normalized amplitude quotient

oq1 Open quotient, calculated from the primary glottal

opening

oq2 Open quotient, calculated from the secondary

glottal opening

oqa Open quotient, derived from the LF model

pch Pitch, calculated from the distance between GCI’s

psp Parabolic spectrum parameter

qoq Quasi-open quotient

sq1 Speed quotient, calculated from the primary glot-

tal opening

sq2 Speed quotient, calculated from the secondary

glottal opening

glottal domain, we computed (for each frame) the 13 glot-

tal waveform parameters implemented in version 0.3.0 of the

APARAT toolbox [13], which have been shown in the liter-

ature to be related to various aspects of voice quality. These

parameters are listed in Table 1; further references may be

found in the APARAT documentation. The following statis-

tical measures were computed on each glottal waveform pa-

rameter vector, as well as on rectified and unrectified versions

of their delta and delta-delta vectors: mean, median, min,

max, standard deviation, range, dynamic range, interquartile

range, skewness, and kurtosis. This procedure resulted in

23643 observations (9376 lie, 14267 truth) at the voiced-section

level, each containing 650 feature statistics. Each observation

was labeled using lie/truth labels at the local lie level (Section

2). The mean number of observations per speaker was 739

(293 lie, 446 truth).

4. EXPERIMENTS

In order to study speaker-dependent glottal effects in decep-

tive speech, all experiments were performed separately on

each speaker. An initial reduction in feature set size was

obtained using a Kolmogorov-Smirnov (K-S) test to estimate

significant variations in single features with respect to class.

Features whose distributions did not differ to a significance

level of p < 0.2 were discarded.

After the removal of irrelevant features, sequential for-

ward floating selection (SFFS) [14] was performed in a wrap-

per approach. SFFS starts with an empty feature set and adds

a single optimal feature in each forward iteration until clas-

sification accuracy no longer improves. At this point, the al-

gorithm attempts to remove a single feature in each backward
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Fig. 1. Box plots showing the distribution of classification

accuracy for each speaker across 100 runs. Horizontal lines

indicate medians; notches denote comparison intervals for the

medians at a 95% significance level; boxes show interquartile

(25th – 75th percentile) ranges; Results beyond the middle

50% are shown as black dots.

iteration while classification improves. The algorithm stops

when the forward and backward stages fail to improve clas-

sification accuracy. Within each SFFS iteration, a Gaussian

Mixture Model (GMM) classifier was trained via the Figueiredo-

Jain (FJ) algorithm [15], which automatically chooses the op-

timum number of mixtures during training.

For each speaker, a random subset of 200 observations

per class (truth/lie) was selected and divided into 100 obser-

vations (per class) for GMM training, 50 for testing inside the

SFFS iterations, and 50 for validation. The validation set was

used to obtain a final score after SFFS had selected a final

feature set. This configuration allowed for a fair performance

comparison between speakers, since the baseline score was

always 50% and each speaker had the same amount of data for

model training. The independent validation set was necessary

to obtain an unbiased score, since the testing set is already

used within the feature selection procedure [14].

Each randomly-selected subset of 200 observations (with

a different seed) was called a “run,” and 100 SFFS runs were

performed for each of 19 speakers. The remaining 13 speak-

ers in the CSC corpus were not analyzed at this time because

they contained less than 200 observations in either class.

5. RESULTS

The classification accuracy distributions for each speaker, given

as box plots in Figure 1, show wide variations across runs.

There are two main reasons for this: Firstly, like all sequen-

tial feature selection procedures, SFFS is susceptible to con-
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Fig. 2. Normalized selection frequency of glottal parameters

across speakers, computed from runs at or above the 75th per-

centile. The figure shows the maximum, mean, and minimum

values across speakers.

vergence on local minima, which suggests that the better runs

may be showing the true classification potential of the glot-

tal features. However, it must also be noted that although the

validation dataset is completely disjoint from the training and

test sets, the random sampling procedure for each run may

result in data partitions in which the test and validation sets

contain many similar (or dissimilar) observations, which may

further influence the final validation score.

Taking these issues into consideration, conclusions about

classification performance were derived from the statistical

properties of the distributions, rather than from the best score

in an individual run: From Figure 1, it can be seen that 17

out of the 19 speakers obtained median scores slightly above

chance. While the results for most speakers are too close to

chance to draw definite conclusions, speakers 26, 30, and 32

scored above chance in approximately 75% of the runs (25th

percentile), strongly suggesting the presence of glottal effects

associated with the deceptive speech of these speakers.

As a preliminary investigation into the discriminatory abil-

ity of each glottal parameter, we produced selection frequency

histograms for the 13 glottal parameters listed in Table 1, us-

ing the final feature sets from runs having a score at or above

the 75th percentile. Assuming that the feature selection pro-

cedure is more likely to select useful features than irrelevant

features, the selection frequency of feature statistics derived

from a particular glottal parameter can be interpreted as a

rough indication of the parameter’s relative usefulness.

Given the 13 glottal parameters, a random probability of

selection of p ≈ 0.077 is assumed. A summary of selec-

tion frequency across all speakers is given in Figure 2. What

mainly stands out from this figure is the consistently low se-

lection frequency of the pitch parameter, which supports the

hypothesis that vocal affect related to deception may be more

clearly manifested as variations in glottal waveform shapes

and spectra than as a simple change in pitch.
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Examination of the individual feature selection histograms

for each speaker (not shown) revealed H1 − H2 to be the

most consistently-selected parameter across speakers, with a

selection frequency above 1.5p for 10 out of the 19 speakers.

While other glottal parameters were selected with high fre-

quency for certain small groups of speakers, feature selection

patterns varied widely across speakers, as evidenced by the

large distances between the maximum, mean, and minimum

values in Figure 2.

6. CONCLUSION

This paper has described experiments for classifying decep-

tive and non-deceptive speech on an individual speaker basis

using features derived from the glottal waveform. The results

presented here highlight a few critical points about deception

in speech: One is that the expression of deception in the glot-

tal domain is highly varied across speakers, which makes the

determination of any global feature set problematic. Addi-

tionally, while several runs demonstrated performance “above

chance,” the overall median performance of the classifiers

must be greatly improved for practical use. It should be em-

phasized, however, that these results are from experiments

that attempted to classify deception at the voiced-section level,

which typically consisted of 100–300 ms of speech. While

this observation level was useful for studying the speaker-

dependence of glottal effects associated with deception, more

useful classification results may be obtained by classifying

entire local lie statements or global lie ‘critical segments’ [4].

Finally, given that this feature set is limited to a single domain

of speech analysis, there is additional encouragement that the

combination of other acoustical and lexical domains can im-

prove overall classification accuracy.

Future work includes the analysis of a larger set of glot-

tal parameters, the development of classification experiments

at longer observation levels, and the combination of glottal

features with other types of acoustic and lexical features.
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