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ABSTRACT

In this paper, we prove that the direction of cepstrum vectors strongly
depends on vocal tract length and that this dependency is represented
as rotation in the n dimensional cepstrum space. In speech recogni-
tion studies, vocal tract length normalization (VTLN) techniques are
widely used to cancel age- and gender-differences. In VTLN, a fre-
quency warping is often carried out and it can be implemented as
a linear transformation in a cepstrum space; ĉ = Ac. However,
the geometric properties of this transformation matrix A have not
been well discussed. In this study, its properties are made clear us-
ing n dimensional geometry and it is shown that the matrix rotates
any cepstrum vector similarly and apparently. Experimental results
using resynthesized speech demonstrate that cepstrum vectors ex-
tracted from a speaker of 180 [cm] in height and those from another
speaker of 120 [cm] in height are reasonably orthogonal. This result
makes clear one of the reasons why children’s speech is very dif cult
for conventional speech recognizers to deal with adequately.

Index Terms— frequency warping, cepstrum, rotation, rotation
matrix, vocal tract length

1. INTRODUCTION

Speech acoustics vary due to differences in gender, age, microphone,
room, lines, and a variety of factors. These factors strongly in uence
the accuracy of speech recognition. To deal with these variations,
usually, thousands of speakers in different conditions are prepared
to train acoustic models of the individual phonemes; called speaker-
independent (SI) system. However, the recognition accuracy of SI
systems is sometimes very low for certain individuals, such as chil-
dren. It means that the SI systems are not really SI.

To overcome the above problem, speaker normalization has been
used in many systems. Speaker normalization techniques can be di-
vided into two approaches; one based on subtraction or taking dif-
ferential and the other based on transformation. Cepstrum mean nor-
malization (CMN) and the use ofΔcepstrums correspond to the for-
mer, and vocal tract length normalization (VTLN) to the latter.

In CMN, the long-term average of the cepstrum is subtracted
from each cepstrum frame [1]. This helps eliminate changes created
not only by differences among individuals, but also by channel dif-
ferences. The use of Δcepstrums is also based on subtracting the
cepstrum of the previous frame from that of the current one.

VTLN techniques are widely used to cancel the difference of vo-
cal tract length (VTL) [2]. In VTLN, the transformation matrix in a
cepstrum space is estimated and used to transform the VTL of an in-
put speaker to a prede ned value. In this paper, a special emphasis is
put on the transformation matrix, whose geometrical properties have
not been well discussed. We mathematically and experimentally in-
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Fig. 1. Examples of frequency warping functions for different values
of α. α < 0 transforms VTL longer and α > 0 does VTL shorter.

vestigate how the transformation matrix in uences cepstrum vectors
and theirΔs andΔΔs.

2. DIFFERENCE IN VTL AND ITS EFFECTS

2.1. Frequency warping

The difference in VTL is often modeled by a warping function in
a spectrum space. We employ a rst order all-pass transform as a
warping function here. The all-pass transform is described as

ẑ−1 =
z−1 − α

1− αz−1
, z = ejω, ẑ = ejω̂, (1)

where α is a warping parameter and |α| < 1; ω and ω̂ are frequen-
cies before and after transformation, respectively. In case of α < 0,
formants are shifted to be lower and the VTL is transformed to be
longer. α > 0 brings about the opposite effect. Figure 1 shows a
few examples of warping functions.

2.2. Linear modeling of frequency warping

We now describe a frequency warping by a linear transformation.
Emori [3] converted a frequency warping of Equation 1 to a linear
transformation in a cepstrum space. If power coef cients (c0 and ĉ0)
are not considered, a frequency warping can be expressed as

ĉ = A c, (2)
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Fig. 2. Effects of transformations of T ,R, andO for α = 0.2.

where

ĉ = (ĉ1 ĉ2 ĉ3 ĉ4 · · · )t

A=

0
BBBB@

1−α2 2α−2α3 · · · · · ·
−α+α3 1−4α2+3α4 · · · · · ·

...
...

...
...

...
...

...
...

1
CCCCA (3)

c = (c1 c2 c3 c4 · · · )t.

From Pitz [4], the element aij of matrix A can be written using the
warping parameter α as

aij =
1

(j − 1)!

jX
m=max(0,j−i)

 
j

m

!

× (m + i− 1)!

(m + i− j)!
(−1)(m+i−j)α(2m+i−j), (4)

where  
j

m

!
=

(
jCm (j ≥ m)

0 (j < m).
(5)

3. ROTATION IN A CEPSTRUM SPACE

3.1. Rotation in a two dimensional cepstrum space

In this section, we discuss the properties of matrix A in Equation
(3) geometrically. To facilitate the discussion, at rst, we focus on
the rst and second dimensions of the cepstrum space. Then, the
discussion will be expanded into n dimensions.

In the two dimensional space, Equation (2) is„
ĉ1

ĉ2

«
=

„
1−α2 2α−2α3

−α+α3 1−4α2+3α4

«„
c1

c2

«
. (6)

We call the transformation matrix in Equation (6) as T , and T can
be decomposed into

T = R + O, (7)

where

R =

„
1−2α2 2α(1− 1

2
α2)

−2α(1− 1
2
α2) 1−2α2

«
, (8)

O =

„
α2 −α3

−α −2α2+3α4

«
. (9)

Fig. 3. Vector led given by Equation (12) for α = 0.2.

R can be viewed as a rotation matrix in a two dimensional space by
well-known approximation that (1 + t)k � 1 + kt, i.e.

R �
„

1−2α2 2α
√

1−α2

−2α
√

1−α2 1−2α2

«
(10)

=

„
cos 2θ sin 2θ
− sin 2θ cos 2θ

«
(α = sin θ). (11)

R is a rotation matrix and it rotates clockwise any vector by 2θ ar-
round the original point.

On the other hand, we can say thatO has a very small in uence
on transformation by T because |α| < 1 and three elements of O
are composed of αn where n ≥ 2. Hence, transformation in a two
dimensional space by T nearly equals transformation by matrix R,
i.e. rotation. Figure 2 shows how a trapezoid in a two dimensional
space is transformed by T , R and O. Three large trapezoids drawn
by solid, dotted, and dashed lines are the ones before and after trans-
formation by T and R with α = 0.2. A small quadrilateral around
the origin is the one transformed by O. It is clearly shown that a
trapezoid is rotated clockwise after transformation by T and this ro-
tation is reasonably similar to that of transformation by R. O has a
very small in uence, where all the points in a space are compressed
around the origin becauseO is close to a zero matrix.

Figure 3 shows the properties of T graphically from another
viewpoint, which is a vector eld given by vector-valued function;

y = (T − I)c = ĉ − c, (12)

where I is a two-dimensional identity matrix. y represents the in-
uence at each point caused by transformation T because matrix

(T − I) means the difference between before and after the transfor-
mation. From Figure 3, the vector eld given by Equation (12) looks
like a vortex. It means that T has a strong function of rotation.

3.2. Rotation in an n dimensional cepstrum space

In an n dimensional space, it is not so easy to extract the rotation
properties from a given transformation matrix as in the case of a 2
dimensional space. Then, in this section, on the basis of the general
de nition of n dimensional rotation matrix, the geometrical prop-
erties of A are examined. Rotation matrix R is generally de ned
as

RtR = RRt = I (13)

det R = +1. (14)
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If it is assumed that |α| � 1,A can be approximated as

An =

0
BBB@

1 2α 0 · · · · · ·
−α 1 3α 0 · · ·
0 −2α 1 4α 0
...

. . .
. . .

. . .
. . .

1
CCCA , (15)

in which αns with n ≥ 2 are ignored. The elements aij ofAn are

aij =

8><
>:

1 (i = j)

sgn(j − i) ∗ jα (|i− j| = 1)

0 (otherwise),

(16)

where sgn(j−i) returns+1 if j−i > 0, or−1 if j−i < 0. Now we
will prove that both ofAt

nAn andAnAt
n are near to I .

At
nAn =

0
BBBBB@

1+α2 α −3α2 0 · · ·
α 1+8α2 α −8α2 · · ·

−3α2 α 1+18α2 α · · ·
0 −8α2 α 1 + 32α2 · · ·
...

. . .
. . .

. . .
. . .

1
CCCCCA (17)

where the diagonal elements are 1+kα2 with k ∈ R, the elements
where |i−j| = 1 are α, those where |i−j| = 2 aremα2 withm ∈ R
and the others are zero. AnAt

n takes the following form.

AnAt
n =

0
BBBBB@

1+4α2 α −4α2 0 · · ·
α 1+10α2 α −9α2 · · ·

−4α2 α 1+20α2 α · · ·
0 −9α2 α 1 + 34α2 · · ·
...

. . .
. . .

. . .
. . .

1
CCCCCA (18)

In both products, α2 can be ignored using the assumption of |α| �
1. Hence, both products can be regarded as a special case of a tridi-
agonal matrix, of which the diagonal elements are 1 and the elements
where |i−j| = 1 are α. AlthoughAt

nAn andAnAt
n are not equal

to I strictly, we can say that An has high orthogonality, putting it
another way, matrixAn approximately satis es Equation (13).

We can calculate the determinant of An because An is a tridi-
agonal matrix [5]. The determinant can be computed recursively as

det An = ann det An−1 − an(n−1)a(n−1)n det An−2. (19)

From Equation (15), ann = 1 and an(n−1)a(n−1)n ∼ α2. Using also
the assumption of |α| � 1, we can conclude det An ≈ det An−1 ≈
· · · ≈ det A1 ≈ 1 recursively.

From the discussions above, we can conclude thatA in Equation
(3) has a certain function of rotating any vector in an n dimensional
space. However, we have to admit that the discussions include some
rough approximations and then, the rotation function which A is
supposed to have has to be veri ed experimentally. Here, by assum-
ing that the vector eld obtained in Figure 3 should be observed also
in an n dimensional space, some properties of A are additionally
predicted. Figure 3 shows that a vector at any point is rotated by T
and, with a xed value of α, we can say that a vector at any point
will be rotated by a similar angle, where the angle is dependent only
on α. In other words, dependently on α, a cepstrum vector of any
phoneme or any gender will be rotated by a similar angle. Another
prediction is about the rotation of Δ parameters. Figure 4 shows
two cepstrum vectors, ct and ct+1 and its Δ vector. If the two vec-
tors are similarly rotated, then, the Δ vector has to be rotated in the

c(t) c(t+1)

A B

O

A'

B'

Fig. 4. Rotation of two cepstrum vectors and theirΔ vector.

[a]    [i] [a]    [i]

Fig. 5. The original speech (left) and its warped version (right).

same way. It is the case with two Δ vectors and their ΔΔ vector.
Similar rotation of any cepstrum vectors means that anyΔn vectors
are also rotated similarly. As told in Section 1, differential operations
play an important role in canceling some kinds of mismatch between
training and testing conditions. However, we can predict that these
operations are totally ineffective for rotation-based transformation.

4. EXPERIMENTS

4.1. Experimental conditions

For evaluating the properties of rotation caused by the difference of
VTL, experiments using resynthesized speech samples /aiueo/ were
carried out. We used speech data from 2 speakers (1 male and 1
female). All the spectrum slices from each speech sample were con-
verted to their warped versions through STRAIGHT analysis [6].
These warped versions correspond to speech samples with differ-
ent VTL. Each speech sample was digitized at a sampling rate of
16 kHz, and analyzed in 25 ms length Hamming window and 5 ms
frame shift. The analysis yielded three vectors (12 MFCC, its Δ,
and its Δ2). Their direction at the central position of each transient
segment (/a/ to /i/, /i/ to /u/, /u/ to /e/ and /e/ to /o/) was focused on
and they were calculated as a function of the estimated body height
of the speaker, where the direction at the original height had 0 deg.
The angle between two vectors, a and b, was calculated as

θ = arccos
a · b
|a||b| . (20)

To resynthesize warped speech, we did not use Equation 1 or 3
directly but used a piece-wise linear approximation of Equation 1;

ω̂ =

(
1
m

ω (0 ≤ ω < m
1+m

π)

m(ω − π) + π ( m
1+m

π ≤ ω ≤ π).
(21)

This was to obtain the relation explicitly between the rotation angle
and the ratio of the VTL of the warped speaker to that of the original
speaker. m in the above equation corresponds to the ratio of the two
VTLs. Relation betweenm and α can be approximately represented
by

1

m
=

3

5

“
−1 +

π

arccos α

”
+

2

5

(1 + α)2

1− α2
. (22)

Figure 5 shows two speech samples which are an original one and
its warped version. The left is the original speech and the right is its
warped version, where formant locations are clearly shifted.
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Fig. 6. Relation between the rotation angle and the estimated body height. (a) to (c) are from a male speaker of 180 cm in height and (d) to
(f) are from a female speaker of 163 cm in height.

4.2. Results and discussions

Figure 6 shows the rotation angles calculated as a function of the
estimated body height. The top three are from the male speaker and
the bottom three are from the female speaker. The two in the left, the
two in the center, and the two in the right are for MFCC, its Δ, and
itsΔΔ, respectively. Each graph contains the results obtained at the
four transient positions in the /aiueo/ utterance. As we predicted in
the previous section, the rotation is observed reasonably irrespective
of gender, phoneme, and the number of differential operations. It
is interesting to see in Figure 6(b), for example, that ΔMFCCs of a
male speaker of 180 cm in height and those of its warped speaker to
be 120 cm in height are orthogonal. We can say that the direction
of cepstrum-based parameters is rotated slowly as the speaker grows
up. These results imply that the directional dependency of cepstrum
coef cients on VTL can be used as one of the effective features for
age (VTL) estimation. Further, we consider that these results clarify
quantitatively one of the reasons why conventional speech recogniz-
ers work poorly with children’s speech.

As told in Section 1, some acoustic distortions can be effectively
canceled by differential operations but the distortion examined in
this paper cannot be canceled by these operations at all. If a param-
eter is de ned as vector in an acoustic space, such as Δcepstrum,
it will inevitably has this kind of distortion. We already proposed
another framework which uses only scalar-based parameters which
are invariant with the above two types of distortions. [7] showed
that a small number of training speakers could provide the acoustic
models for SI speech recognition because the proposed scalar-based
parameters cannot see the two types of distortions at all.

5. CONCLUSIONS

We have mathematically and experimentally proved that cepstrum
coef cients are strongly dependent on vocal tract length difference
and this dependency is represented as rotation in a cepstrum space.

This fact was expected qualitatively in our previous study [8]. Fur-
ther, the rotation angle is shown to be independent of phoneme,
speaker, and the number of differential operations. It is also shown
that two vectors in one category can be orthogonal if they are from
speakers with very different body height. The conventional acoustic
modeling framework collected these very different data to be mod-
eled as one statistical model. We consider whether this strategy is
reasonable enough geometrically.
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