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ABSTRACT 

A fast likelihood computation approach called dynamic 
Gaussian selection (DGS) is proposed for HMM-based 
continuous speech recognition. DGS approach is a one-pass 
search technique which generates a dynamic shortlist of 
Gaussians for each state during the procedure of likelihood 
computation. The shortlist consists of the Gaussians which 
make prominent contribution to the likelihood. In principle, 
DGS is an extension of the technique of Partial Distance 
Elimination, and it requires almost no additional memory 
for the storage of Gaussian shortlists. DGS algorithm has 
been implemented by modifying the likelihood computation 
module in HTK 3.4 system. Results from experiments on 
TIMIT and HIWIRE corpora indicate that this approach can 
speed up the likelihood computation significantly without 
introducing apparent additional recognition error.   

Index Terms— Gaussian selection, fast likelihood 
computation, hidden Markov models, speech recognition  

1. INTRODUCTION 

Most state-of-the-art large vocabulary continuous speech 
recognition (LVCSR) systems use continuous density 
HMMs (CDHMMs) as the underlying technology to 
perform acoustic modeling of speech signals. In a typical 
HMM-based LVCSR system, the number of model states 
ranges from 2000 to 6000, each of which is a Gaussian 
mixture model (GMM) with typically 8 to 64 multi-
dimensional Gaussian distributions. For each input frame, 
the output likelihoods should be computed for every active 
state. The state likelihoods estimation is computationally 
intensive and typically takes about 30% to 70% of the total 
recognition time [1]. Therefore, this kind of likelihood-
based statistical acoustic modeling is so time-consuming 
that the recognition is several times slower than real time.  

Many different algorithms have been proposed to speed 
up the likelihood computation, the most popular ones are in 
the category of VQ-based Gaussian selection [1, 2]. A 
typical VQ-based Gaussian selection technique can lead to 
significant additional memory requirements. To overcome 

this problem, we propose an alternative scheme, dynamic 
Gaussian selection (DGS), based on the partial distance 
elimination (PDE) framework [3]. DGS aims at maintaining 
recognition accuracy with no additional memory overhead.  

The paper is organized as follows. The Gaussian 
selection techniques are reviewed and analyzed in Section 2. 
Section 3 describes a nearest neighbor approximation 
technique based on PDE. In Section 4, DGS is presented in 
detail, which uses the extended PDE method to compute the 
log likelihood of each GMM on several dynamically 
selected Gaussian components. This technique is tested and 
evaluated with English continuous speech corpus TIMIT as 
well as on the French LVCSR project HIWIRE. 
Experimental results are presented in Section 5. It is 
concluded in Section 6 that DGS is an efficient technique 
for fast likelihood computation, and combining DGS with 
other optimization techniques can give rise to satisfactory 
real-time performance. 

2. VQ-BASED GAUSSIAN SELECTION 

In CDHMM-based LVCSR systems, the output likelihood 
of an HMM state S for a given observation feature vector, 
xn, can be expressed as a Gaussian mixture model (GMM), 
which is a weighted sum of multivariate Gaussian densities 
[4]. Analogous to series expansions used to approach 
complex functions, the Gaussian mixture model is an 
approximation mechanism to compute various probability 
distributions. Usually, for a given observation vector, only a 
few Gaussians, or just one Gaussian in some cases, will 
dominate the likelihood of a GMM. So, the computation of 
a Gaussian mixture can be truncated to one or a small 
number of Gaussians provided that the approximation 
accuracy is guaranteed. This basic understanding led to the 
idea of Gaussian selection. Many different algorithms have 
been proposed to decide which Gaussians in the mixture 
dominate the likelihood [1, 2, 5]. The set of selected 
Gaussians is usually called the shortlist of the mixture 
model. 

The most commonly used Gaussian selection technique 
is the VQ-based Gaussian selection. Though many different 
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methods can be used to implement this technique, the key 
idea is to partition the acoustic space into a number of sub-
spaces, called clusters, each of which being represented by a 
centroid. After training the HMM models, for each state-
centroid pair (S, C) a shortlist of Gaussians of S is formed 
according to a certain distortion measure between the 
centroid and the Gaussians. During recognition, each 
observation vector is mapped to a centroid C first, and then 
the likelihood of each state S is computed only on the 
shortlist corresponding to the (S, C) pair. Therefore, VQ-
based Gaussian selection technique is essentially a two-pass 
search. In the first pass, a rough model is used to determine 
the location of the observation vector in the acoustic space, 
and a shortlist is correspondingly decided for each GMM. In 
the second pass, the input vector is computed on the derived 
shortlists and thus the likelihoods of all GMMs are 
evaluated. Though there is a computational saving due to 
Gaussian selection, extra memory requirement is introduced 
because the use of the shortlists implies a significant 
memory overhead. 

3. PARTIAL DISTANCE ELIMINATION 

A nearest-neighbor approximation of likelihood, which 
requires no additional memory for shortlists, can be used as 
a fast likelihood computation technique to reduce the 
computational overhead [3]. Instead of computing the 
likelihood by summing across all mixtures, the maximum 
mixture probability is taken as the state likelihood. This 
nearest-neighbor approximation can be expressed as: 
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M represents the number of mixture components for state S;
Zk is a constant for each Gaussian and can be computed 
before recognition. N is the dimension of the feature vector, 

k  and k are the mean and covariance matrix for the kth 
Gaussian density in state S.

This nearest-neighbor search problem can be thought as 
a vector quantization (VQ) codebook search problem, where 
the Gaussians in that state are the codewords and the 
distortion measure is given on the right side of (1). Let 
Dk(xn|y) denote this distortion measure for the codebook 
search (here, y is the codebook), then  
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In the codebook search, we must maximize Dk(xn|y). By 
inspecting (2), we can find that the right-hand side is 
actually a weighted Euclidean distance measure, and the 
computation of the distortion measure Dk(xn|y) is performed 
recursively on each element of the observation vector. 
Furthermore, with the progress of each recursion, the value 
of Dk(xn|y) decreases monotonically. Therefore, a technique 
called partial distance elimination (PDE) can be used to 
reduce the computational complexity. The algorithm starts 

by accumulating all the Euclidean distances and deriving the 
distortion measure for the first Gaussian of the mixture, 
according to (2). The value of this distortion measure is 
used to initialize the maximum distortion Dmax. For many 
other Gaussians in the mixture, Dk(xn|y) < Dmax . For such a 
Gaussian the intermediate value of the distortion will drop 
below Dmax at a certain element j(j<N). So the recursion for 
evaluating such a Dk(xn|y) can be stopped at the jth element. 
This means that the computation of a part of the Euclidean 
distances is eliminated in searching the codebook. This kind 
of PDE algorithm can increase the efficiency of the 
codebook search, and therefore speed up the likelihood 
approximation. 

The efficiency of PDE technique relies heavily on how 
quickly a high estimate of Dmax is obtained. A high 
efficiency can easily be accomplished by exploiting the high 
correlation between adjacent observation vectors. Using the 
previous “best” Gaussian as the prediction of the current 
“best” one, and computing the distortion of this Gaussian 
first could result in a high Dmax immediately and speed up 
the elimination process for the codebook search. This 
method is called the “best mixture prediction” (BMP). 

Another algorithm, called feature element reordering 
(FER), also known as feature component reordering (FCR), 
can complement PDE and BMP techniques for further 
reduction in likelihood computation. On right-hand side of 
(2), the contribution of some of the feature elements to the 
value of the Gaussian is greater than others. The idea of 
FER is to shuffle the elements in the computation of (2) in 
such a way that elements contributing prominently in the 
weighted Euclidean distance are computed first followed by 
the elements contributing less. With FER, PDE process is 
further speeded up because the Gaussians whose 
probabilities are smaller than the current Dmax are eliminated 
as early as possible. In FER, the reorder rule is usually 
learned offline from a portion of the development set and 
remains fixed during recognition. 

Though combining PDE framework with both BMP 
and FER is reported as an efficient technique [3], this 
nearest-neighbor search technique uses only the probability 
of one Gaussian in the mixture to approximate the whole 
likelihood. The contribution of all other Gaussians to the 
likelihood is omitted in the approximation. Thus, the 
resolution of the HMM model is degraded, as well as the 
recognition accuracy. 

4. DYNAMIC GAUSSIAN SELECTION 

To overcome the above problem of PDE method, we 
propose an alternative scheme called dynamic Gaussian 
selection (DGS). It aims at utilizing the advantages of PDE, 
BMP and FER techniques to speed up the computation of 
likelihood, while introducing less degradation of 
recognition accuracy than PDE. In DGS scheme, a shortlist 
of Gaussian components is selected to compute the 
likelihood instead of using only the maximum Gaussian to 
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approximate the likelihood. But the generation of the 
Gaussian shortlist is totally different from the static shortlist 
generation in VQ-based Gaussian selection. DGS scheme 
uses a dynamic data-driven method to generate the shortlist 
for each observation-state pair. Unlike the two-pass search 
in VQ-based Gaussian selection, there is no pre-decided 
shortlist in DGS and no mapping of the observation vector 
to a certain centroid in the acoustic space before likelihood 
computation. The Gaussian shortlist is generated 
dynamically during the computational procedure of 
likelihood, according to a heuristic knowledge about the 
distance between each Gaussian and the best one to date. It 
is thus a single-pass search, within which not only the 
Gaussian shortlist is decided but likelihood is computed as 
well. The algorithm of this DGS scheme is described below. 
Algorithm: Dynamic Gaussian Selection
INPUT: xn , an N-dimensional observation vector ; 

,,,,,, M21kZ kkkN , a 
GMM with M mixture components ; 
Qthresh , a threshold number of loops on 
right-hand side of (2) ; 

OUTPUT: Dapprox , the approximation of log 
likelihood of the GMM .

PROCEDURE 
BEGIN 

 (1) Compute DBMP, the log likelihood of the BMP 
Gaussian component; 

 (2) Dmax =: DBMP ; 
 (3) Dapprox =: Dmax ; 
 (4) WHILE (the algorithm has not traversed all 

Gaussians)  DO
BEGIN 

 (4.1) Perform PDE on an untouched Gaussian 
,, kkkZN ;

 (4.2) IF (after Qthresh loops the intermediate value 
of Dk is not less than Dmax ) 

 (4.2.1) Complete the loops to derive Dk
of the Gaussian ; 

 (4.2.2) Dapprox =: logadd [ Dapprox + Dk ] ;  
 (4.2.3)  IF (Dk > Dmax)
 (4.2.3.1) Dmax =: Dk ; 

ENDIF 
ENDIF 

END 
 (5) RETURN  Dapprox ;

END 
The basic idea of this algorithm is to use the number of 

loops at which the recursion on the right-hand side of (2) 
stops as a clue to decide whether the Gaussian should be 
included in the shortlist. In this algorithm, the BMP 
Gaussian is computed first, and then each Gaussian is 
evaluated using the standard PDE algorithm. For a Gaussian, 
the recursion of the right-hand side of (2) will stop at the jth 
element. If j is a number of small value, i.e., the summation 

loops stop at an early element, then the log likelihood of this 
Gaussian component could be far lower than BMP Gaussian 
since the value of (2) decreases monotonically with the 
progress of each loop. Therefore, the smaller the value of j,
the greater the distance between this Gaussian component 
and the BMP Gaussian could be expected. This means that 
Gaussian components with a small value of j contribute 
little to the likelihood of the state and thus can be omitted in 
the likelihood computation. Otherwise, if j is a large number, 
the summation loop of (2) stops at a later element. This 
indicates that the log likelihood of this Gaussian component 
is close to BMP one, because the elements of the Gaussian 
component are reordered in such a way that elements with 
higher contribution to the distortion measure in (2) are 
computed first, followed by the elements contributing less. 
This Gaussian component contributes significantly to the 
state likelihood and thus it should be included in the 
shortlist. In the algorithm, a threshold number Qthresh is 
given to decide whether a Gaussian component should join 
the shortlist. If j is greater than Qthresh , the Gaussian 
component is selected to be included in the shortlist and all 
the loops of (2) are completed in order to include its full 
contribution in the likelihood. All the selected Gaussian 
components constitute the shortlist which is decided 
dynamically in the procedure of likelihood computation 
itself. PDE technique is used here to reduce the 
computational complexity. So, DGS scheme is an extended 
PDE technique in terms of that a Gaussian shortlist is 
decided based on PDE framework. In comparison with VQ-
based Gaussian selection method, DGS scheme is memory 
saving because no shortlist should be pre-decided and kept 
in memory.  

5. EXPERIMENTS AND RESULTS 

Experiments on continuous speech recognition tasks have 
been carried out to evaluate and compare the performance 
of DGS scheme with those of PDE and its variants. The 
toolkit HTK 3.4 is used as the baseline system. The 
likelihood computation module in HTK has been modified 
to implement PDE and DGS schemes. Two accent-variant 
large vocabulary continuous speech corpora of English, 
TIMIT and HIWIRE [6], are used to perform the 
recognition.  

The CMU phoneme set is adopted and 40 continuous 
HMMs for monophones are used as the acoustic models, 
including an HMM for silence. All HMMs have 3-state, 
left-to-right topology with the same number of Gaussian 
mixtures ranging from 16 to 128. The speech data is coded 
into 12 MFCCs, along with normalized log-energy and their 
first and second time derivatives, resulting in 39-
dimensional feature vectors. To complement PDE with FER, 
the 39 elements of the feature vector are shuffled according 
to their contributions to the whole likelihood. The 
reordering is learned off-line from all the SA sentences (the 
dialect sentences) in the TIMIT test set. 
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Figure 1  Normalized Recognition Time for TIMIT 
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Figure 2  Normalized Recognition Time for HIWIRE 

Table 1  Recognition Accuracy for TIMIT 
Phone Accuracy (%)Scheme

16-G 32-G 64-G 128-G
Baseline 56.7 58.7 59.9 60.2

PDE 56.3 58.3 59.4 59.7
PDE+BMP+FER 56.3 58.3 59.4 59.7

DGS 56.6 58.7 59.8 60.1

Table 2  Recognition Accuracy for HIWIRE 

Phone Accuracy (%)Scheme
16-G 32-G 64-G 128-G

Baseline 36.6 38.7 41.0 42.2
PDE 36.2 38.4 40.5 41.8

PDE+BMP+FER 36.2 38.4 40.5 41.8
DGS 36.6 38.8 41.0 42.2

PDE and DGS schemes are assessed by calculating the 
total time for recognition, as well as the recognition 
accuracy. Instead of word or sentence accuracy, phone level 
accuracy is calculated in order to clearly demonstrate the 
differences between performances of different schemes. In 
the implementation of DGS scheme, the threshold number 
Qthresh is set to be 35. All experiments are performed on a 
3.4GHz Intel Pentium 4 machine with 2GB RAM. Figure 1 
and Table 1 show the results of the experiment on TIMIT. 
Different HMMs with different number of Gaussians are 
trained and tested. The results for HIWIRE are shown in 
Figure 2 and Table 2. (With the acoustic model trained on 
TIMIT, the phone recognition accuracy on HIWIRE foreign 
accent corpus is quite low.) The recognition times are 
normalized by that of the corresponding baseline. All the 
results are an average of 10 runs on each configuration in 
order to reduce interference from outside processes. 

The experimental results indicate that DGS scheme 
achieves a significant saving (>21%) of phone recognition 
time with a smaller degradation of accuracy than PDE. 
Confidence interval measuring of the results indicates that 
there is no significant difference between baseline and DGS 
in the sense of accuracy while the difference between PDE 
and baseline is apparent. It is noticeable that DGS algorithm 
takes a little more time to compute the likelihood than the 
scheme of PDE incorporated with both BMP and FER. The 
extra time cost comes from the completion of the 
summation loop of (2) for the selected Gaussians in the 
dynamic shortlists. Experimental results show that high 
recognition accuracy can be achieved with the average 
length of the dynamic shortlists less than 3. Therefore the 
extra time cost of DGS algorithm is quite limited. 

6. CONCLUSION 

A fast likelihood computation technique, called Dynamic 
Gaussian Selection (DGS) is proposed based on the concept 
of Gaussian selection. This approach is a one-pass search 
technique which generates a dynamic shortlist of Gaussians 
for each state during the procedure of likelihood 
computation. DGS algorithm is an extension of PDE 

technique. It uses the number of summation loops in the 
likelihood computation to dynamically decide a small set of 
“sub-optimal” Gaussians which are numerically close to the 
“best” Gaussian. Though the theoretic gain of DGS remains 
to be analyzed, experiments show that limiting the 
likelihood computation on the selected shortlist can 
significantly speed up the likelihood computation while 
introducing almost no additional recognition error. DGS 
does not require extra memory for the storage of Gaussian 
shortlists, making it particularly suited for applications on 
embedded platforms. Furthermore, we can integrate DGS 
with other optimization techniques, such as the context-
independent HMM-based two-pass search used in Julius 
system [7], so as to improve the speed of likelihood 
computation as much as possible. 
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