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ABSTRACT

In the present work, we propose a hybrid architecture for 
automatic alignment of speech waveforms and their corre-
sponding phone sequence. The proposed architecture does 
not exploit any phone boundary information. Our approach 
combines the efficiency of embedded training techniques 
and the high performance of isolated-unit training. Evaluat-
ing on the established for the task of phone segmentation 
TIMIT database, we achieved an accuracy of 83.56%, which 
corresponds to improving the baseline system’s accuracy by 
6.09 %. 

Index Terms— Speech segmentation, hidden Markov 
models, embedded training, isolated-unit training.

1. INTRODUCTION 

The development of large speech corpora, consisting of real-
istic and unconstrained speech, speeded up the evolution of 
speech technology significantly [1]. Specifically, in the last 
two decades a number of speech processing tasks, such as 
text-to-speech conversion [2], voice transformation [3], text-
dependent speaker recognition [4, 5] and language identifi-
cation based on phoneme recognition [6] took advantage of 
these corpora. This progress allowed the emergence of 
commercial applications. All these tasks depend on speech 
corpora with available annotation of speech label boundaries 
(most often phones, but also syllables, words, sentences). 
Moreover, the quality of the label alignment is crucial for 
enhancing the performance of these applications.  

Currently, manual annotation of speech recordings to 
phonemic labels and boundaries is the most accurate method 
[7]. However, manual annotation is time-consuming (espe-
cially for large databases) and expensive (usually expert 
phonetician is required). Moreover, manual labeling intro-
duces annotators’ subjectivity [8]. For these reasons, auto-
matic phoneme segmentation (APS) algorithms have been 
proposed.  

There are two major categories of methods for APS: 
implicit and explicit [9]. In implicit (or text-independent) 

techniques, the speech signal is segmented to fragments, 
corresponding to phone-like (or syllable-like) units, without 
any knowledge of the corresponding phonetic transcription. 
In explicit (or text-dependent) methods the speech signal is 
segmented and time-aligned against a known phonetic tran-
scription. Generally, explicit techniques achieve higher per-
formance, since the number of detected segments is equal to 
the given in the transcription, in contrast to the implicit case 
were the number of predicted boundaries is not always cor-
rect. 
 The superior performance of explicit techniques, estab-
lished them as a traditional choice in the task of creating 
phonemic transcriptions of speech databases, for which the 
word level transcription is usually known. Numerous ex-
plicit segmentation approaches have been proposed. In [10] 
synthetic speech is aligned against natural speech, using the 
dynamic time warping (DTW) algorithm. In [11] a phoneme 
alignment algorithm based on discriminative learning is pro-
posed. In [12] automatic alignment is carried out using neu-
ral networks followed by boundary refinement using heuris-
tic speech-specific knowledge. Most of the reported work 
on the task of explicit segmentation is based on the well es-
tablished and widely used hidden Markov models (HMMs) 
[8, 13, 14].  

A typical structure of the HMM-based APS is illus-
trated in Fig. 1. In HMM-based APS a phoneme recognizer 
is employed for segmenting the data. Specifically, the text 
transcription of the speech utterance is converted to the cor-
responding phone sequence, using a letter-to-sound con-
verter. Subsequently, the speech waveforms are force-
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Fig. 1. Baseline HMM-based APS block diagram.
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Fig. 2. Hybrid embedded-isolated phone alignment.

aligned against the corresponding phonetic transcriptions 
using the Viterbi algorithm [15]. 

In the present work we propose a hybrid architecture 
for automatic phone alignment which does not require 
knowledge of phoneme boundary information. Our ap-
proach combines the cost efficiency of embedded training 
techniques and the high performance of isolated-unit train-
ing.  

2. EXISTING METHODS FOR HMM-BASED PHONE 
MODEL TRAINING 

The training of each HMM-based phone model consists of 
two basic steps, initialization and refinement. Initially, pro-
totype HMMs, corresponding to each phone, are defined 
and their parameters are initialized. Next, the parameters of 
each HMM are iteratively re-estimated in order to capture 
the corresponding phone’s statistical characteristics. The 
Viterbi and Baum-Welch algorithms have been successfully 
used for that purpose. Typically, phone models are built 
from bootstrap speech data by employing either isolated-
unit or embedded-unit training [16]. In isolated-unit train-
ing, hand-labeled bootstrap data are needed. Each HMM 
model is initialized and iteratively re-trained exclusively 
from the speech segments of the corresponding phone and 
the HMMs are trained independently from each other.  
 When labeled data are not available embedded-unit 
training is applied. Embedded training does not require any 
prior knowledge of the phone boundaries for the bootstrap 
data set. During initialization the training data are uniformly 
segmented and the parameters of every model are set equal 
to global values (flat initialization). Next, all HMMs are si-
multaneously re-estimated through the Baum-Welch algo-
rithm, to update the parameters of the models. 
 It is known from the literature that isolated models 
achieve higher phoneme segmentation scores than embed-
ded training [13]. However, when one deals with speech da-
tabases collected for the needs of specific application, often 
bootstrap data with hand-labeled phonetic transcriptions and 
time-marks of their boundaries are not available. In such 
cases, the dilemma is either to manually annotate part of the 
database (in order to prepare the bootstrap data) or to rely 
on embedded techniques to train the phone models.  

3. THE HYBRID ARCHITECTURE 

One problem that arises when embedded training is em-
ployed is the appearance of convergence problems for long 
sentences [10]. These problems are associated with the use 
of flat initialization. To avoid such inconvenience, we de-
veloped the hybrid architecture illustrated in Fig. 2. It takes 
advantage of the capability of embedded techniques to train 
HMMs without requiring information about the boundaries 
between the distinct units (here phones). On the other hand, 
it exploits the capability of isolated training to model more 
accurately (in the terms of maximum likelihood) the statisti-
cal characteristics of the target unit (phone). 

As Fig. 2 illustrates, initially the word transcriptions of 
the bootstrap speech data are converted to the corresponding 
phone sequence. Since phone boundary information for the 
training data is not available, the embedded technique is ex-
ploited. One HMM is constructed for each phone and flat 
initialization is applied to every model. Subsequently, em-
bedded re-estimation of the initialized models’ parameters is 
performed. The training is terminated when the log-
likelihood ratio between two successive iterations reaches a 
pre-defined threshold. After the refinement of the HMM pa-
rameters is completed, the speech data are force-aligned 
against the corresponding phone sequence. The outcome of 
the embedded HMM training procedure is an initial set of 
automatically estimated phone-labels. These phone-labels 
are fed as input to isolated-phone training. At first, a new set 
of models for the target phones is constructed. The new 
HMMs are initialized utilizing the automatic phone labels 
and further re-estimated. Similarly to the embedded training 
stage, a convergence criterion is introduced to control the 
number of re-estimation iterations. After refining the mod-
els’ parameters is completed, the isolated-HMM phone 
models are utilized for re-alignment of the speech wave-
forms with the corresponding phone sequences. As a result, 
updated phone-labels are created. They are utilized as a 
feedback to construct new isolated HMM models, which 
subsequently will be time-aligned. 

The process described so far, involving both embedded 
and isolated techniques, leads to automatically estimated 
phone labels, whose annotations are refined iteratively. The 
training process can be terminated when the overall bound-
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ary shift between two successive iterations reach a prede-
fined threshold. This hybrid architecture can be applied di-
rectly for training and time-alignment of speech data, or al-
ternatively, for training HMM-based phone models from a 
bootstrap subset and then exploit them to segment speech 
data. 

4. EXPERIMENTAL SETUP 

To evaluate the proposed hybrid architecture we utilized the 
HTK toolkit [16] and the DARPA-TIMIT [17] database. 
TIMIT database has been established for measuring per-
formance on the phone segmentation task [8, 11, 13].  

Each utterance of TIMIT had been automatically seg-
mented and manually checked. The labels correspond to the 
61 phone set of American-English. Although in previous 
work [18] a subset of 48 phones has been proposed, here we 
use the full set in order to capture all phonetic phenomena 
that appear in speech. 

For the purpose of comparison to previous related work 
[13], we followed the speech pre-processing and parame-
terization as described there. Specifically, speech 
waveforms were frame blocked every 5 milliseconds, 
utilizing a 20 milliseconds Hamming window. Employing a 
first-order FIR filter, pre-emphasis with factor equal to 0.97 
was performed. For every speech frame, we computed the 
12 first Mel frequency cepstral coefficients [16] and the 0-th 
cepstral coefficient, and their time derivatives. Thus, we 
consider a feature vector composed of 26 parameters. 

In [13, 19], an HMM prototype with 6 states (the first 
and last state are non-emitting) and left-to-right transitions 
without skips was proposed. It was found to provide supe-
rior phone recognition rate. However, the full set of 61 
phones contains also some shorter phones, whose duration 
is less than 20 milliseconds. In order to capture phones with 
duration close to 15 milliseconds we also consider a 5 state 
HMM, with two non-emitting states, left-to-right transitions 
without skips. 

It has been shown in the literature that for the task of 
phone segmentation context-independent HMMs achieve 
higher segmentation accuracy [7, 20]. Therefore in the pre-
sent evaluation, we consider context-independent HMMs. 

5. EXPERIMENTS AND RESULTS 

In all experiments, we followed the standard TIMIT division 
to training and test subsets. Thus, all models were created 
using the training subset as bootstrap data. However, these 
models were tested on both training and test subsets, in or-
der to examine the performance on phone-aligning speech 
data as well as on building models for segmentation. Accu-
racy was evaluated in terms of percentage of boundaries 
predicted in location smaller than t milliseconds from the 
hand-labeled boundaries. The most commonly reported tol-
erance of 20 milliseconds was followed here [7]. 

As a first step, the phone segmentation accuracy for the 
case of embedded training (initial set of automatic phone-
labels), as well as for the case of isolated training (using the 
hand-labeled transcriptions) were measured. The results ob-
tained for the 5-state and 6-state HMMs are presented in 
Table 1. Here the Train and Test columns indicate the subset 
on which the performance was measured.  

Table 1. Phone segmentation accuracy of embedded and iso-
lated training using the hand-labeled phonetic transcriptions. 

HMM Training Method Train Test 
5-states Embedded 76.77% 76.31% 
5-states Isolated 87.47% 86.79% 
6-states Embedded 78.05% 77.47% 
6-states Isolated 88.67% 88.22% 

The phone segmentation accuracy we obtained for the 6-
state HMM model is in agreement with the performance re-
ported in [13]. Furthermore, even on the complete set of 61 
phones the 6-state HMM outperformed the 5-state one. 

The accuracy of the automatic phone labels after each 
iteration, for the 6-state HMM, is illustrated in Fig. 3. As it 
can be seen in the figure, after a sufficient number of itera-
tions, segmentation accuracy reaches 83.56% on the test 
subset. This corresponds to improvement of more than 6% 
in the accuracy of phone boundaries detection, when com-
paring to the baseline of 77.47% (for 0 isolated training 
passes). For the case of time-aligning of the training data, a 
segmentation accuracy of 84.03% was achieved. 

Similar improvement of the phone segmentation rate 
was observed in the case of 5-state HMM. The accuracy of 
the automatic phone labels after each iteration, for the 5-
state HMM, is illustrated in Fig. 4. As it can be seen in the 
figure, the accuracy increases from 76.31% (for 0 isolated 
training passes) to 82.61% after the first 20 iterations. When 
time-aligning of the training data was performed, the phone 
segmentation rate reached 83.12%, 6.35% higher than the 
baseline performance. 

This significant improvement is owed to the iterative re-
finement of the phone models. Specifically, the gradual im-
provement of the detected boundaries leads to training of 
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Fig. 3. Phone segmentation accuracy for the first 20 iterations 

and 6-state HMM phone models.
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each phone model with more accurate annotations of the tar-
get speech segments (the bootstrap data that correspond to 
the each specific phone). In turn, more robust phone models 
lead to more accurate time-alignment of the speech wave-
forms and phonetic labels. 

For the purpose of comparison with previous related 
work on TIMIT database, in Table 2 we present reported 
segmentation rates. The tabulated performances refer to the 
case of training without utilizing bootstrap data boundary 
information, where our method falls in. 

 

6. CONCLUSION 

We presented a hybrid embedded-isolated architecture for 
automatic time-alignment of speech waveforms and phone 
labels. Our approach does not require any phone boundary 
information, but offers advantage over the baseline embed-
ded method. A 6% reduction of error from misaligned 
boundaries (for tolerance of 20 milliseconds), was achieved. 
We deem that the proposed method will benefit applications 
for which phonetic transcriptions are not available. 
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