
FAST GAUSSIAN LIKELIHOOD COMPUTATION BY MAXIMUM PROBABILITY 
INCREASE ESTIMATION FOR CONTINUOUS SPEECH RECOGNITION 

Nicolás Morales1, Liang Gu2, Yuqing Gao2

1HCTLab. Universidad Autonoma de Madrid, SPAIN. 
2IBM T.J. Watson Research Center, Yorktown Heights, USA. 

nicolas.morales@uam.es, lianggu@us.ibm.com, yuqing@us.ibm.com 

ABSTRACT 

Speech signals are semi-stationary and speech features in 
neighboring frames are likely to share similar Gaussian 
distributions. A fast Gaussian computation algorithm is hence 
proposed to speed up the computation of the N-best posterior 
probabilities based on a large set of Gaussian distributions for the 
task of large vocabulary continuous speech recognition. The 
maximum probability increase between the current speech frame 
and a previous reference frame is estimated for all Gaussian 
distributions in order to reduce explicit computations of posteriors 
for a large number of Gaussians. The method was applied to the 
fMPE front-end of IBM’s state-of-the-art speech recognizer 
resulting a decoding speed-up of 40% in probability computation 
for a loss-less mode and more than 55% in an approximated 
implementation, respectively.

Index Terms— Fast Gaussian computation, fMPE

1. INTRODUCTION 

Gaussian likelihood computation may take up to 80% of total 
computation time in state-of-the-art Automatic Speech 
Recognition (ASR) systems. Such systems typically compute 
posterior probabilities of a large number of Gaussian distributions 
in the procedures of Viterbi search, model adaptation (MAP [1]), 
feature extraction (fMPE [2]), etc. 

Several methods have been proposed to improve the speed of 
Gaussian likelihood computation in ASR. Some approaches make 
trade-offs between estimation accuracy and computational 
complexity, at the potential cost of lower recognition accuracy. For 
example, Gaussian clustering schemes [3] and tree-based search 
algorithms [4] [5] [6] quickly identify a subset of the most likely 
Gaussians for a particular frame. The computation of Gaussian 
posteriors can also be approximated by Hamming Distance 
Approximation [7]. Other approaches aim at improving 
computational speed without any loss of accuracy. A typical 
example is Partial Distance Elimination (PDE), where the 
likelihood computation process is terminated for a specific 
Gaussian mixture when its partial accumulated value is larger than 
the total posterior value of the current N-best candidate [8] [9]. 
Another approach via efficient programming is to use SIMD 
instructions that exploit the power of modern processors by 
parallelizing frequently repeated operations [10]. 

This work was conducted as part of an internship in IBM.

In this paper we propose Maximum Probability Increase 
Estimation (MPIE), a new method for fast Gaussian likelihood 
computation in ASR that reduces the number of Gaussian 
posteriors to be explicitly calculated and therefore enhances 
overall speech recognition speed without any accuracy loss. In 
particular, the Gaussian posteriors’ information from previous 
speech frames is exploited in order to speed up likelihood 
computation for the current frame. Our approach is analogous to 
Gaussian clustering and tree-based pruning methods in the sense 
that computation is restricted to a selection of candidates. 
Moreover, it is risk-free and as accurate as the PDE approach in 
[9]. As a result, our approach can essentially enjoy the merits of 
both types of speed-up methods previously proposed.  

The rest of this paper is organized as follows. In Section 2 we 
briefly describe fMPE feature extraction for which our method was 
applied. Section 3 presents the mathematical formulation of MPIE 
and Section 4 explains several implementation issues. In Section 5 
we present experimental results using the latest version of IBM’s 
large vocabulary continuous speech recognition system [11] and in 
Section 6 we discuss on results and future work.

2. FMPE FEATURE EXTRACTION 

Feature space Minimum Phone Error (fMPE) [2] is a form of 
discriminative training recently proposed that uses the same 
objective function as MPE [12] in order to modify speech feature 
vectors during both ASR model training and ASR decoding. 

Original feature vectors tx for a frame t with dimension D are
transformed as: 

t t ty x M h , (1) 

where
t

h  are high-dimensional features calculated from the 
original feature vector and M is a matrix that maps the high-
dimensional space to the lower dimension of the original features. 

Various types of composition of vector 
t

h have been 
proposed. In this paper, 

t
h  consists of the concatenation of 

weighted offset features. The offset in each dimension is defined 
as the difference between the speech feature of the current frame 
and the mean of a Gaussian distribution in a set of L Gaussian 
multivariate functions that model the original feature space, 
weighted by the posterior of the Gaussian distribution. 
Additionally, the posterior probability score itself is assigned as an 
extra feature dimension. Consequently, the concatenation of such 
offset vectors for all Gaussians yields a feature vector 

t
h  of 

dimension 1R L D .
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While significant improvement of ASR accuracy was 
achieved in large-vocabulary continuous ASR experiments [2], the 
substantial increase of computational complexity hence involved 
in front-end analysis during speech recognition remains a big 
concern, particularly for real-time client-based ASR applications 
where computational power is very limited. The problem may be 
alleviated by using very sparse 

t
h  vectors, i.e. for each frame t

only a few elements of 
t

h  are non-zero. This may be achieved by 
setting all Gaussian posteriors to zero except the best C candidates 
[2]. In our implementation we set C=3 for optimal reduction of 
fMPE computational complexity.

3. MPIE FORMULATION 
 
3.1. Basic principle of MPIE 
In this paper Gaussian posteriors are denoted and computed as: 
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where
m

 and 
m

 are the mean vector and covariance matrix for 
Gaussian mixture m, respectively, and o is a speech feature vector 
with dimension D. When diagonal covariance matrixes are used, 
the logarithmic Gaussian posterior can be obtained as: 
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log 0.5
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m m d m d m d
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where
m

c  is a constant for each Gaussian and ,m dv  are the 
diagonal elements of the inverse covariance matrix. Given two 
observations

1t
o  and 

2t
o  from frames 

1
t  and 

2
t  respectively 

(
1 2

t t ), we may write an equivalent equation: 

2 1

2 2

1, , 2, , ,
1

log log

0.5 ;

m t m t

D

t d m d t d m d m d
d

p p

o o v

o o
 (4) 

2 1 , ,
1

1 ,
1

1 2

log log

log , ,

D

m t m t d d m d m d
d

D

m t m d
d

t t

p p A B v

p P

o o

o o o
 (5) 

where
, 1 2

,
m d t t

P o o  defines the change of likelihood for 
2t

o  with 
respect to 

1t
o given Gaussian m and dimension d. We defined: 

2 2

1, 2, 1, 2,, 0.5d t d t d t d t dA A o o o o , (6) 

1, 2, 2, 1,,d t d t d t d t dB B o o o o . (7) 

Vectors 
d

AA  and 
d

BB  are constant for all 
Gaussian mixtures and the corresponding computational cost is 
hence negligible compared to the cost of Eq. (3). Since Eq. (5) is 
equivalent to Eq. (3) and 

1
log

m t
p o  is known, it is possible to 

reduce the computational cost of 
2

log
m t

p o  if we devise a fast 

computation algorithm for 
, 1 2

,
m d t t

P o o . To achieve this goal, in 
MPIE, instead of using Eq. (5) for all Gaussians m, we estimate an 
upper bound of 

, 1 2
,

m d t t
P o o for all Gaussians, corresponding to 

the maximum likelihood improvement that any Gaussian may get 
in frame 

2t
o  compared to that in frame 

1t
o . Specifically we define 

the upper bound as: 

max/ min, max,
1 1

D D

d d d d d
d d

U U A B v . (8) 

where
d

U  is the maximum possible probability improvement for 
dimension d. The improvement term in Eq. (8) was maximized by 
taking the maximum value of the inverse of the variance 

max, d
v  for 

the whole set of Gaussians, and the maximum or minimum of the 
means values 

max/ min, d
, according to the sign of 

d
B . From Eq. (5): 

2 1log logm t m tp p Uo o , (9) 

As stated in [9], a good candidate to be the best scoring 
Gaussian for a particular frame 

2t
o  is 

_ 1 2best t t
p o , the best 

Gaussian of a neighboring previous frame 
1t

o . In fMPE, we only 
search for the best C Gaussians and only if their posterior is larger 
than that of the best candidate plus the constant prun. Therefore, 
all mixtures m that fulfill the following inequation are irrelevant 
for frame 

2
t :

1 _ 1 2
1

log log
D

m t d best t t
d

p U p pruno o  (10) 

3.2. Partial MPIE (P-MPIE) 
Estimation of U as in Eq. (8) is conservative (for the goal of 
removing a large number of Gaussians from the candidate list) and 
in some cases U may be so large that all Gaussians need to be 
evaluated explicitly. Typically, the contribution to the U function 
by different dimensions d is non-uniform; therefore, we propose to 
use the estimation for dimensions that contribute less, and perform 
explicit computation for those dimensions for which the estimation 
is large. In this fashion Eq. (10) is modified, so that mixtures that 
fulfill the following equation do not need to be recalculated: 

1 ,
1, 1,

_ 1 2

1 2log ,

log ,

D D

m t d m d
d d P d d P

best t t

t tp U P

p prun

o o o

o
 (11) 

where

_dd P iff U imp thresh . (12) 

The elements d P  for which we estimate an upper bound 
are different for each frame, according to the relative variation of 
that particular frame compared to the reference frame, as well as 
the characteristics of the acoustic models.

4. IMPLEMENTATION ISSUES 

A key element for a significant speed-up with the proposed 
approach is the minimization of the overhead cost. We found four 
sources of extra cost for our implementation: 

a) Computation of vectors A and B as in Eqs. (6) and (7). 
b) Computation of U  function defined in Eq. (8).
c) Evaluation of the condition for mixture discarding, Eq. (11). 
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d) Break-up of computation of posteriors for those Gaussians 
that need to be re-evaluated. 

The impact of a) and b) is very small because these are 
performed only once for each frame and the cost is negligible 
compared to that of computing Gaussian posteriors. Also, the 
evaluation of the condition for discarding mixtures is small 
because it is done once for each Gaussian. 

Break-up of the computation of posteriors was an important 
problem. When using the P-MPIE approach, the contribution to the 
posterior of the elements of the feature vector d P is done in an 
initial stage and that for d P  is done later. In order to avoid the 
introduction of if conditions we used index mapping, resulting in 
very little overhead cost. Interestingly, we observed that explicit 
computation using Eq. (5) is faster than with Eq. (3), but this 
should be tested in different platforms and compilers before 
conclusions may be extracted.   

Additionally we performed several other code optimizations; 
loop unrolling was used in all cases where the number of iterations 
is fixed (e.g. an operation repeated for the number of dimensions D
of the feature vector). The whole code was profiled and some of 
the most costly operations (fMPE feature extraction and Viterbi 
search) were parallelized for nearly 50% speed-ups in two-core 
CPUs. Assembly code instructions were also employed for 
Gaussian likelihood computation. 

5. EXPERIMENTAL RESULTS 

In this section we show experimental results for several variants of 
MPIE for the computation of posteriors in fMPE. We use 1024 
Gaussian mixtures and tests are for 1800 spontaneous utterances 
with 30k-word English vocabulary. Frame windows are 25 ms 
long with a 10 ms shift and preprocessing consists of MFCC 
feature extraction (24 features) followed by LDA. 
 
5.1. Loss-less implementation 
Here we compare speed of the baseline system (computing all 
posteriors for all frames) to that of Partial-MPIE. Parameter 
imp_thresh needs to be adjusted  for a convenient trade-off, in 
order to assure a sufficiently high number of dimensions included 

in the estimation of U, but keeping the estimation small enough. 
Additionally, a criterion has to be defined so as to determine when 
to perform a complete computation of posteriors (after a few 
frames the reference and current observations are not similar 
anymore and MPIE is less effective). 

In Figure 1 we show results for a fixed number of frames 
(offset) after which full computation is performed (e.g offset=4
means that full computation as in Eq. (3) is done every 4 frames 
and for all other frames P-MPIE is used). 

The fastest configuration allows for a speed-up close to 40% 
compared to the baseline. The ideal value of imp_thresh is around 
5.00 and depends on the set of Gaussians used, but not 
significantly on the type of data or the offset parameter. The ideal 
value of offset in this experiment is offset=6; full re-computation 
every 60 ms. In many cases this is excessive for the assumption of 
similarity of frames, however, the cost of full recalculation is 
large, thus favoring larger values of offset. This ideal value is 
nevertheless dependent on the speech characteristics (typically 
style, but other factors like noise also affect). In order to overcome 
the inconvenience of tuning it to specific data we propose the 
following two criteria for re-computation of all Gaussians for a 
given frame: 

a) Difference between likelihood (DBL) of the best Gaussian 
in the reference frame and in the current frame is larger than a 
threshold.

b) Number of dimensions (ND) for which inequation (12) 
holds is smaller than a threshold. 

Both approaches are less affected by the characteristics of 
data than setting a fixed offset and therefore are more efficient and 
easier to tune. In Table 1 we show speed-ups for the 3 approaches. 
In addition to the aforementioned tuning advantage the two non-
fixed approaches perform faster. 

When implemented in our latest IBM large vocabulary 
recognition engine on Windows XP, the proposed MPIE approach 
obtained an overall speed-up of 2.6% and 20%, when the graph 
search beam factor was set as 13 and 10, respectively. In the future 
we will further implement MPIE in the Viterbi decoder to achieve 
more significant improvements.

5.2. Approximated solution 
The proposed method is conservative because it finds an upper 
bound for the likelihood improvement and assumes that all 
Gaussians may get such improvement. The maximum 
improvement is computed using the means value 

max/ min, d
,

corresponding to outlier Gaussians that in most frames will have 
small likelihoods. Similarly, 

max, d
v  corresponds to the narrowest 

Gaussians, also scoring badly in most cases. However, the 
estimation is applied to all Gaussians, incurring in significant 
overestimations. In order to reduce this effect we may assume 
some level of risk by multiplying the value of maximum 
improvement by: 

_ /Risk Risk factor count d P D , (13) 

where 0 _ 1Risk factor .

Figure 1. Cost of Gaussian computation in the fMPE module 
for the baseline and P-MPIE using fixed values of offset for full 
re-computation of Gaussians. 

Method  Baseline Fixed DBL ND 
Speed-Up  0 % 39.76 % 41.06 % 41.07 % 

Table 1. Relative speed-up for three different criteria for full 
re-computation. Imp_thresh = 4. 
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In Table 2 we show relative speed-ups, percentage of errors in 
Gaussian classification (any error in the first C=3 Gaussians) and 
the relative impact in ASR with this setup. It is possible to obtain 
speed-ups over 55% relative to the baseline, with less than 1% 
errors in the selection of the best C candidates (and less than 
0.04% relative increase in Word Error Rate).

6. DISCUSSION AND FUTURE WORK 

The proposed approach has proved to be a very effective method 
for loss-less fast Gaussian computation. Even in the case of the 
approximated implementation, the impact in WER is so small that 
it could be assumed for very significant speed-ups. Our approach 
introduces extra operations in the Gaussian computation algorithm 
only at the level of Gaussian mixtures, while PDC [9] introduces 
these at the level of dimensions of the feature vector, resulting in 
larger overhead cost. PDC on the contrary is more effective for the 
purpose of removing operations and therefore obtains significant 
speed-ups too (we implemented PDC in its most efficient version, 
using best mixture prediction and feature component reordering
for a speed-up of 45.47%). The combination of PDC and MPIE is 
under investigation and is likely to get further computational 
benefits, though PDC should not be used on the reference frames 
for which we need to know the posteriors for all Gaussians. 

Another possibility to improve performance would be to 
group Gaussians according to their means and/or covariance values 
and perform P-MPIE independently for each group, thus obtaining 
more accurate estimations of MPIE.

Finally, an important topic that has not been addressed yet is 
the existence of very small values of diagonal covariance elements 
in Gaussian mixtures. The estimation in Eq. (8) uses 

max, d
v ,

corresponding to the narrowest Gaussian of the set for each 
dimension. In our system no constraints were imposed on the 
narrowness of Gaussians and as a result, the relation between 
maximum and minimum values for different dimensions is 
typically over 10 and for 6 of the D=40 dimensions, it is over 50. 
This is an obvious cause for overestimation with MPIE and so, in 

the future we will study the possibility of imposing constraints on 
minimum narrowness of Gaussians, which would allow for 
significant improvements in speed at little or no accuracy costs. 

 
7. CONCLUSIONS 

In this paper we presented MPIE, a new algorithm for fast 
computation of the best candidates in a set of Gaussians. This is a 
novel idea that exploits information on Gaussian likelihood on 
previous frames in order to reduce the number of operations 
required for the current frame, by taking advantage of the semi-
stationary nature of speech signals. The proposed implementation 
achieves 40% speed-up over the baseline in fMPE for a problem of 
large vocabulary continuous speech recognition in loss-less mode. 
We also presented a modification that allows for further speed 
improvement at a very moderate accuracy cost and proposed 
several other modifications for future work.
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Imp_thresh Risk 
factor 

Errors 
Gauss. 

(%) 

Rel. WER 
increase 

(%) 

Speed-up 
(%) 

0.02 0.20 0.000 40.23 
0.1 0.16 0.000 40.19 4 
0.5 0.00 0.000 40.14 

0.02 1.04 0.038 49.12 
0.1 0.49 0.025 49.02 12 
0.5 0.04 0.000 46.64 

0.02 2.10 0.075 54.11 
0.1 0.58 0.025 53.42 20 
0.5 0.02 0.000 42.75 

0.02 3.82 0.100 57.23 
0.1 0.54 0.050 55.58 28 
0.5 0.02 0.000 35.90 

0.02 5.76 0.138 59.55 
0.1 0.79 0.038 56.4436 
0.5 0.02 0.000 30.97 

Table 2. Speed-up and errors made for different values of the 
risk_factor and imp_thresh in the approximated implementation. 
Highlighted is a good trade-off. 
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