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ABSTRACT

In this paper, we investigate the significance of contextual infor-
mation in a phoneme recognition system using the hidden Markov
model - artificial neural network paradigm. Contextual information
is probed at the feature level as well as at the output of the mul-
tilayerd perceptron. At the feature level, we analyze and compare
different methods to model sub-phonemic classes. To exploit the
contextual information at the output of the multilayered perceptron,
we propose the hierarchical estimation of phoneme posterior proba-
bilities. The best phoneme (excluding silence) recognition accuracy
of 73.4% on the TIMIT database is comparable to that of the state-of-
the-art systems, but more emphasis is on analysis of the contextual
information.

Index Terms— Phoneme recognition, contextual information,
hierarchical systems, matched filters.

1. INTRODUCTION

Phoneme recognition refers to identifying the sequence of phonemes
present in a given speech signal. Phoneme recognition can be use-
ful in applications such as spoken document retrieval, named en-
tity extraction, out-of-vocabulary detection, language identification,
and spoken term detection. Hence, there is an increased interest in
the speech research community to develop phoneme recognition sys-
tems with accuracies as high as possible.

The state-of-the-art approaches to phoneme recognition include
the traditional hidden Markov model (HMM) - Gaussian mixture
modeling of phonemes [1] with additional discriminative training
[2] techniques. Recently, conditional random fields [3] and large
margin classifiers [4] based acoustic modeling have shown to give
good recognition accuracies. The best result on TIMIT so far has
been achieved by using the hidden Markov model - artificial neural
network (ANN) paradigm [5]. We further investigate this approach
and explore ways to incorporate the contextual information.

The best recognition accuracy obtained in this work is compara-
ble to those obtained in the state-of-the-art systems [2][3][4][5]. The
objective of this work is to investigate the significance of contextual
information in the HMM-ANN approach to phoneme recognition.
Here, the contextual information refers to the knowledge at two lev-
els (a) sequence of feature vectors at the input of the multilayered
perceptron (MLP), and (b) sequence of phoneme posterior probabil-
ities at the output of the MLP.

We incorporate contextual information at the feature level by es-
timating the posterior probability of sub-phonemic classes instead of
whole phoneme and analyze two approaches for its estimation. We
also analyze the contextual information at the output of the MLP and

exploit it in an hierarchical system using an MLP or a single layered
perceptron (SLP). The SLP is viewed multidimensional matched fil-
ter and this interpretation is an extension of [6].

2. BASIC PHONEME RECOGNIZER

The basic phoneme recognition system is based on the hiddenMarkov
model - artificial neural network (HMM-ANN) paradigm [7]. A
multilayered perceptron estimates the posterior probability of phonemes
given the acoustic evidence P (qt = i|xt), where qt denotes the
phoneme index at frame t, xt denotes the feature vector taken with a
window of certain frames. A neural network with sufficient capacity
and trained on enough data estimates the true Bayesian a posteriori
probability [8][7]. The scaled likelihood in an HMM state is given
by the Bayes rule as (1), where we assume equal prior probability
P (qt = i) for each phoneme i = 1, 2 . . . 39. The state transition
matrix is fixed with equal self and next state transition probabilities.
Viterbi algorithm is applied to decode the phoneme sequence.

p(xt|qt = i)

p(xt)
=

P (qt = i|xt)

P (qt = i)
(1)

Experiments were performed on TIMIT database, excluding the
‘sa’ dialect sentences. The training data consists of 3000 utterances
from 375 speakers, cross-validation data set consists of 696 utter-
ances from 87 speakers and the test data set consists of 1344 ut-
terances from 168 speakers. The TIMIT database, which is hand-
labeled using 61 labels is mapped to the standard set of 39 phonemes
as explained in [1], except in the way the closures are handled. In
our case, when a closure occurs before its own burst, the closure and
the burst are merged (e.g. /tcl t/→ /t/). On the other hand, if a clo-
sure precedes any phoneme other than its own burst, the closure is
mapped to its burst (e.g. /pcl t/→ /p t/).

The speech signal is processed in blocks of 25 ms with a shift
of 10 ms to extract 13 perceptual linear prediction cepstral coeffi-
cients every frame. These coefficients after cepstral mean/variance
normalization are appended to their delta and delta-delta derivatives
to obtain a 39 dimensional feature vector for every 10 ms of speech.

A three layered MLP is used to estimate the phoneme posterior
probabilities. The network is trained using the standard back propa-
gation algorithm with cross entropy error criteria. The learning rate
and stopping criterion are controlled by the frame classification rate
on the cross validation data. In the basic system, the MLP consists
of 1000 hidden neurons, and 39 output neurons (with softmax non-
linearity) representing the phoneme classes.

The performance of phoneme recognition is measured in terms
of phoneme accuracy (100 - phoneme error rate). While decoding,
all phonemes are considered equally probable (no language model).
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The optimal phoneme insertion penalty is chosen to give maximum
phoneme accuracy on the cross-validation data. A window duration
of 9 frames on the feature vector gives the best phoneme recognition
of 68.1%. The recognition accuracy for different window durations
are reported in [9]. The context at this stage is only to address the
fact that MLP does a record (not sequence) based classification, and
feature vectors bear sequential information. In section 3, we try to
exploit the contextual information in a more explicit way.

3. CONTEXTUAL INFORMATION FOR PHONEME
RECOGNITION

Human speech production is a continuous process, where, depending
on the linguistic message to be communicated, the articulators (lips,
tongue, vocal cords etc.) are appropriately moved to produce a se-
quence of information bearing sounds. Due to the inherent inertia in
the production mechanism, any sound in this sequence is influenced
by its neighboring context. This effect is known as coarticulation.

3.1. Context modeling at the feature level

Due to coarticulation effect, the phoneme has an left segment which
is influenced by the preceding phoneme, a center part correspond-
ing to the phoneme, and a right segment which is influenced by the
following phoneme. One way to exploit this contextual informa-
tion is to model the left, middle and right parts of the phonemes
using three separate MLP classifiers. For this, each phoneme is
segmented equally into three states. For training the left classifier,
only the frames belonging to the left part of the phoneme are used.
Similarly, the right and middle classifiers are trained independently.
Each MLP estimates the posterior probability P (qt = i|xt, st = j),
where qt denotes the phoneme and st denotes the state at time t. The
state index can take values j = 1, 2, 3 corresponding left, middle,
and right phonemic state. The scaled likelihood in an HMM state
(qt = i, st = j) is derived using Bayes rule as (2). The state prior
probability P (qt = i, st = j) is independent of t and all states are
assumed to be equally likely. P (st = j|xt) can be estimated using
anMLP, but in this work we make a strong assumption of conditional
independence i.e. P (st = j|xt) is equivalent to P (st = j).

p(xt|qt = i, st = j)

p(xt)
=

P (qt = i|xt, st = j)

P (qt = i, st = j)
P (st = j|xt) (2)

To validate this formulation, we plot the cumulative distribution
function (CDF)1 of the posterior probability for the phoneme /uw/
obtained from the middle MLP classifier in two conditions: (i) when
actually the phoneme /uw/ is uttered and (ii) any other phoneme is
uttered as shown in Fig. 1. In the best case, the posterior value
should be unity when phoneme /uw/ is uttered and zero otherwise. It
is clear from the figure that by independent modeling, we get a CDF
slightly closer to the best case than by a single model for the whole
phoneme.

In the above case, the sub phonemic classes are not discrimi-
nated against each other. Another way to exploit the contextual in-
formation is to train a single MLP classifier whose output represents
the sub phonemic classes [5]. In this case, the MLP classifier learns
to discriminate between the sub phonemic classes and estimates the
posterior probability of each state P (qt = i, st = j|xt). The scaled

1We choose to plot CDF over the probability density function (PDF) as
both its x and y axis are between zero and one.
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Fig. 1. CDF of posterior probability of phoneme /uw/ when phoneme
/uw/ is said (top) and when other phonemes are said (bottom).

likelihood in an HMM state is given by (3), where equal prior prob-
ability for each state is assumed.

p(xt|qt = i, st = j)

p(xt)
=

P (qt = i, st = j|xt)

P (qt = i, st = j)
(3)

Results in Table. 1 show that for models trained on uniformly
segmented labels, independent modeling of sub-phonemic classes
(three MLP case) is slightly better than joint modeling (single MLP
case) of sub-phonemic classes. Both these approaches perform bet-
ter than 68.12% obtained by modeling the whole phoneme.

Table 1. Phoneme recognition accuracy for context modeling with
uniformly segmented state labels and force aligned labels.

classifier labels for training MLP
uniform force aligned

one MLP with 117 classes 69.87 71.67
three MLPs each 39 classes 70.13 69.70

In the above analysis, a phoneme was equally segmented into
three sub phonemic states. One can obtain a more accurate state
segmentation by force aligning the posteriors obtained from an MLP
trained on hand-labeled data to the true phoneme sequence. The
new labels are then used to re-train the MLP classifiers. As shown
in Table. 1, independent modeling of sub-phonemic classes do not
show any additional improvement in accuracy by using force aligned
labels for training as they are insensitive to exact state segmentation.
On the other hand, joint modeling of sub-phonemic classes shows
significant improvement as class separability is increased.

3.2. Context Modeling at the posterior level

In section 3.1, the state posteriors obtained by sub-phonemic mod-
eling are taken as state emission probabilities in the hybrid decod-
ing framework. As shown in Table. 1, by joint modeling of sub-
phonemic classes and a classifier trained on force-aligned labels, a
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recognition accuracy of 71.67% is obtained. This compares favor-
ably to the basic system accuracy of 68.12% but useful information
can still be contained in the trajectories of the state posteriors.

To validate this hypothesis, we train another MLP to estimate the
posterior probability of a phoneme given the state posterior trajecto-
ries P (qt = i|Qt) obtained from sub-phonemic modeling. Here, qt

denotes the output phoneme index andQt denotes the state posterior
probabilities at time t taken with a window of certain frames. Hid-
den layer size was arbitrarily fixed at 3000 neurons, but not much
change in recognition accuracies was observed by reducing the size.
A window duration of 23 frames gave the maximum accuracy of
73.4%2[9]. Here, the hierarchical approach is used to estimate the
posterior probability of a phoneme as a whole, not much improve-
ment is observed by sub-phonemic modeling.

Hierarchical estimation of posterior probability of phonemes is
a non linear system (black box). However, as both input and output
to the hierarchy are phonemes, we can study the system by applying
carefully designed inputs and analyzing its outputs. This analysis is
explained in the following section.

4. ANALYSIS

The factors that could contribute to the improvement in the phoneme
recognition accuracy using an hierarchical approach are (a) informa-
tion across state posteriors of a phoneme, (b) information across state
posteriors of other phonemes, and (c) a context of approximately 230
ms taken while combination.

4.1. Information across state posteriors of a phoneme

To study the contribution of using three state posteriors at the input
of the combining classifier, we use single state posteriors and com-
pare the recognition accuracies.The single state posteriors could be
obtained using a single state MLP (whose output neuron represents
a phoneme) or by summing up the state posteriors of phonemes ob-
tained from a three state MLP (whose output neuron represents a
phonemic state). A context of 230 ms is presented at the input of
the combining classifier. The phoneme recognition results for the
hierarchy as well as direct hybrid decoding are given in Table 2.

Table 2. Recognition accuracy for different inputs to hierarchi-
cal posterior estimation. The output of the MLP models the whole
phoneme and single state decoding is applied.

experiment input to the MLP hierarchy
1-state 1-state (sum) 3-state

no hierarchy 68.12 70.17 71.67
hierarchy 71.55 73.01 73.42

It can be inferred from Table 2 that by three state modeling of
a phoneme and subsequent three state decoding, the improvement
in accuracies come from better modeling of the sub-phonemic states
as well as the decoding process itself [5]. The better modeling is
evident from the improvement in recognition accuracies by 3-state
modeling and single state decoding (70.17%) over single state pos-
teriors and single state decoding (68.12%). The contribution of the

2By using a bigram phoneme language model on hierarchically estimated
posteriors, we obtain an accuracy of 73.85%. Furthermore, by considering
silence class while evaluation, as done in some of the prior works, we obtain
an recognition accuracy of 75.0%.

decoding process is evident from the increase in accuracy by three
state decoding (71.55%) over single state decoding (70.17%) on the
posterior obtained from the same three state MLP.

Another inference from Table 2 is that there is an improvement
in recognition accuracies by using hierarchical combination of poste-
riors than directly using in hybrid decoding. In the case of phoneme
posteriors obtained by summing state posteriors, the hierarchy per-
forms at 73.01% which is close to combination directly on state pos-
teriors 73.42%. This suggests that information in the state posteriors
may be less significant as compared to other factors. In the follow-
ing section, we investigate the information across different phoneme
posteriors.

4.2. Information across phoneme posteriors

To study the contribution of information across different phoneme
posteriors at the input of the hierarchy, we distort the input to sup-
press any information across the phoneme posteriors. In the first ex-
periment (expt-A), at every frame, the maximum phoneme posterior
is assigned a value of 0.9 and the rest are assigned random values
such that they sum up to 1.0. In the second experiment, (expt-B),
at every frame, the maximum phoneme posterior retains its value,
but the rest are assigned random values. Table 3 shows the phoneme
recognition accuracies for these experiments.

Table 3. Phoneme recognition accuracies for hierarchical posterior
estimation using multilayered and single layered perceptron.

experiment no MLP SLP
hierarchy hierarchy hierarchy

baseline 68.12 71.55 70.40
expt-A 62.77 70.27 69.23
expt-B 64.24 70.75 69.60

In expt-A and expt-B, a decision on the phoneme identity at ev-
ery frame is already made based on the maximum posterior proba-
bility. In expt-A, the input to the combining classifier can be con-
sidered as a sequence of discrete phoneme symbols (e.g. phoneme
decisions every 10 ms, /b/, /b/, /k/, /b/, /b/, /ah/, /ah/...) presented
with a long context. The performance of the hybrid recognition per-
formance drops due to coarse quantization. However, the MLP used
for for combination, still outperforms the baseline performance by
2.15%. The only knowledge here is a context of 23 frames provided
to the hierarchy, which shows the influence of only the long context
presented to the hierarchy. Another important observation is that in
expt-A, as the input to the hierarchy is 23 frames of 39 phoneme pos-
teriors, all the data points are near the the basis of (23 * 39) dimen-
sional space. This indicates that a linear classifier may be sufficient
for hierarchical combination of the phoneme posteriors. To validate
this hypothesis, we investigate the single-layered perceptron (SLP)
which is discussed in the next section.

4.3. Single layer perceptron (SLP)

A single layered perceptron linear classifier is used for hierarchical
estimation of the phoneme posterior probabilities. Unlike the MLP,
there exists a closed form solution for the SLP weights [10], but we
use gradient descent approach with softmax output nonlinearity and
cross entropy error criteria. As shown in Table 3, with single state
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phoneme posteriors at its input, the SLP hierarchy compares favor-
ably to the baseline (no hierarchy) accuracy of 68.12% but performs
poorer compared to the MLP hierarchy by about 1%.

By extending the SLP hierarchy for three state phoneme posteri-
ors, we obtain an accuracy of 72.01% compared to 71.67% obtained
by hybrid decoding and 73.40% obtained by using an MLP hierar-
chy. Despite its poor performance compared to MLP hierarchy, SLP
is still useful in understanding hierarchical estimation as it can be
viewed as a matched filter and this interpretation is an extension of
the work described in [6].

4.4. SLP as a matched filter

In the work [6], a novel approach for phoneme spotting is proposed.
A matched filter for each phoneme is derived independently by av-
eraging its phoneme posterior trajectory. The width of the matched
filter captures the duration of the phoneme and height captures the
prior probability of the phoneme. The phoneme posteriors are con-
volved with their respective matched filters and peaks are picked to
spot phonemes.
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Fig. 2. The matched filters for the phoneme /iy/ and /jh/. The plot
also shows top three contributing phonemes in the filter.

The single layered perceptron can be viewed as multidimen-
sional linear matched filters derived jointly for all phonemes by min-
imizing the cross entropy error criteria. Fig 2 shows the matched
filter for the phonemes /iy/ and /jh/. The SLP matched filter of a
phoneme (e.g. /iy/) captures the contribution of different phoneme
posteriors at the input of the SLP (in the window duration of 23
frames) to the posterior probability of phoneme /iy/. Phoneme /iy/
has a negative contribution from the phoneme /ah/. In the matched
filter for the phoneme /jh/, there is a contribution from phoneme /d/
and its peak precedes the center of /jh/, which is consistent with
the production of /jh/. A similar phenomenon is observed for the
phoneme /ch/, which has a similar contribution from phoneme /t/.

5. SUMMARY AND CONCLUSIONS

In this paper, we further investigate the hidden Markov model - arti-
ficial neural network paradigm for phoneme recognition and analyze
the contextual information at the features level as well as the out-
put of the MLP (phoneme or state posterior probabilities). At the
feature level, we probed two ways to estimate the state posteriors
of phonemes which are (a) independent modeling of the three sub-
phonemic classes (three MLP case) and (b) joint modeling of sub-
phonemic classes (single MLP case). Experiments suggest that after
force alignment, the joint modeling gives the best performance, but

this could be due to the strong assumption of conditional indepen-
dence.

We also analyzed the contextual information in the phoneme and
state posterior probabilities. We show that hierarchical estimation
of phoneme posterior probabilities using MLP or SLP gives better
recognition accuracies compared to direct hybrid decoding (no hier-
archy). The major factor for this is a context of approximately 230
ms, even though the information across the phoneme/state posterior
trajectories are also important.

Hierarchical estimation of the phoneme posterior can also be
viewed as a classifier combination, where the MLP or SLP uses the
output of the first classifier over a window of 23 frames and makes a
new decision. The inferior performance of the SLP hierarchy could
be attributed to its inability to learn simple voting rules (such as
max) for classifier combination. Nevertheless, the SLP can be in-
terpreted as a linear multidimensional matched filters which enables
us to study the relations between input and output phoneme poste-
riors in the hierarchical classifier. While such an relation certainly
exists in the case of an MLP, it is difficult to plot or analyze it due to
the presence of the hidden layer.
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