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ABSTRACT

This paper explores the error-robustness of phone-to-word trans-
duction across a variety of languages. We implement a noisy
channel model in which a phonetic input stream is corrupted
by an error model, and then transduced back to words using
the inverse error model and linguistic constraints. By con-
trolling the error level, we are able to measure the sensitiv-
ity of different languages to degradation in the phonetic input
stream. This analysis is carried further to measure the impor-
tance of each phone in each language individually. We study
Arabic, Chinese, English, German and Spanish, and nd that
they behave similarly in this paradigm: in each case, a phone
error produces about 1.4 word errors, and frequently incor-
rect phones matter slightly less than others. In the absence of
phone errors, transduced word errors are still present, and we
use the conditional entropy of words given phones to explain
the observed behavior.

Index Terms— Speech recognition, phonetic decoding,
transduction, multilingual, ASR

1. INTRODUCTION

State-of-the-art speech recognition systems currently apply
all the information sources at their disposal simultaneously
in the decoding process. These sources consist of the pro-
nunciation dictionary, the context model or decision tree, the
language model, and the actual acoustic model or gaussians.
This consolidation is most complete in decoders based of the
Finite State Transducer paradigm [1, 2] where the dictionary,
language model, and decision tree can be fully combined in
advance of any decoding, but it is present in other decoding
architectures as well, for example in the form of language
model lookahead [3]. While this strategy is highly effective,
from the research point-of-view it may be easier to implement
and test newmodeling techniques in a more decoupled frame-
work.
Therefore, there has been a signi cant amount of work in

recent years to support modularized recognizers for research
purposes. In the FLaVoR architecture developed at Leuven
University [4, 5], decoding is broken into a two step pro-
cess, the rst generating phone lattices and the second apply-
ing morpho-phonological andmorpho-syntactic constraints to
produce words. Similarly, in the Automatic Speech Attribute

Transcription paradigm [6], it is proposed that the recognition
process should proceed bottom up through multiple stages.
In an effort to better understand the properties of a mod-

ularized system, this paper studies the intrinsic dif culty of
converting from phones to words. The rst stage uses the
phone set of [7] and associated acoustic models to recover a
one-best phone sequence. The second stage uses a nite state
transducer scheme to recover words from phones. In contrast
with previous work on multi-stage decoding, our work relies
solely on an error model in the transduction phase to formally
model the mistakes that are made at the phone recognition
level. The error model is an unconstrained model of IID in-
sertions, substitutions and deletions, and more general than
the single error model of [5]. The advantage of using the er-
ror model approach is that it allows us to directly implement
a noisy channel model of speech communication, and to pose
and answer a number of interesting questions. Speci cally,
we conduct a class of experiments that involves corrupting
a reference phone sequence with a known error model, and
then measuring our ability to recover words. This allows us
to answer several questions that have not been well studied
before:
1. How easy is it to recover words from a correct but un-
segmented phone string, and how does this vary across
languages?

2. As the phonetic input stream is corrupted with errors,
how quickly is our ability to recover words degraded?
Are there threshold effects where a small number of
phonetic errors can always be detected and recovered
from? How does this vary across languages?

3. Are errors in some phones more important that errors
in others, and how does this vary across languages?

4. How do the computational requirements of the phone-
to-word transduction process vary as the phonetic input
is progressively degraded?

The remainder of this paper is organized as follows: in
Section 2 we present the formulation of our method. Section 3
describes the CallHome dataset, and the phone recognizer that
was used for the different languages. Section 4 examines the
robustness of the transduction process to phonetic errors, and
presents an explanation for the observed behavior. Section
5 addresses the question of whether some phones are more
important than others. Section 6 offers concluding remarks.
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2. FORMULATION

In the noisy-channel model we adopt, we assume that the
sender begins with a sequence of words he or she intends to
communicate, and speaks a phonetic sequence determined by
the pronunciations of those words. A phone recognizer then
processes the audio and produces an errorful version of the
intended phones. The receiver gets this corrupted phone se-
quence and must decode the likeliest sequences of intended
words. This can be more precisely stated if we let wi denote
the intended words, pi denote the intended phone sequence,
and pc denote the corrupted phone sequence. The job of the
decoder is then to determine

arg max
w

P (w|pc) = arg max
w

P (w)P (pc|w)

= arg max
w

P (w)
X

pi

P (pi,pc|w)

= arg max
w

P (w)
X

pi

P (pi|w)P (pc|pi,w)

≈ arg max
w,pi

P (w)P (pi|w)P (pc|pi)

The factors involved in the maximization each have sim-
ple interpretations: P (w) is given by the language model;
P (pi|w) is given by the pronunciation model; and P (pc|pi)
is given by the phone-level error model. In all the experiments
described subsequently, we use a rst-order error model with
insertion and deletion probabilities for every phone, and sub-
stitution probabilities for all pairs of phones. Table 1 illus-
trates an example of our noisy channel model.
There is a simple representation of this model in terms of

nite state transducer operations. Denote the intended word
sequence by W , the pronunciation dictionary by P , the lan-
guage model by L, the error model by E, the process of sam-
pling a random path through a nite state acceptor by sample,
and the process of nding the likeliest path by bestpath. Then
the received (corrupted) phone sequence R is given by R =
sample(W ◦ P ◦ E). The operation of decoding can be rep-
resented as bestpath(R ◦ E−1 ◦ P−1 ◦ L).
Given this formulation, it is possible to explore the ques-

tions raised in section 1. To nd the intrinsic dif culty of re-
covering words from phones in the error-free case, we imple-
ment the noisy channel model with an “identity” error model
that never inserts or deletes, and always replaces a phone by
itself. To study the sensitivity of the decoding process to
phone errors, we construct error models with various error
rates, and then compute bestpath(sample(W◦P◦E)◦(E−1◦
P−1 ◦L)). Finally, it is possible to explore the importance of
single phones. Let Ep be the original error model E, except
that errors involving phone p are adjusted to have zero prob-
ability. Then measuring the difference between using E and
Ep in the round-trip process gives an indication of the impor-
tance of p. We have explored the use of this methodology in
ve of the CallHome languages and using an acoustic model
that uses a universal phone set. The database and acoustic
model are described next.

Intended words I’m sorry we’ll blame him
Intended phones aI m S a r i: w i: l b l ei m H I m
Corrupted phones aI m S a r i: w i: D l ei m H I m
Recovered words I’m sorry we blame him

Table 1. Steps in the noisy channel model

3. DATABASE AND ACOUSTIC MODELS

3.1. CallHome

In order to work with a data set with roughly equal resources
across a variety of languages, we used the CallHome database
[8]. This database has speech, transcriptions, and lexica in
EgyptianArabic, MandarinChinese, English, German, Japanese,
and Spanish. The audio data for each language consists of
120 telephone conversations of up to 30 minutes each (100
conversations for German). Eighty of the conversations are
marked as training data and 20 each for development and test,
except for German which has development data only. Since
the experiments did not involve parameter tuning, and a test
set is absent for German, all results are reported on the de-
velopment set. Due to a high out-of-vocabulary rate for the
Japanese lexicon, we did not use the Japanese language data.

3.2. The UPR

To conduct our experiments, we need a phone-level error model
for each language, re ecting realistic error patterns. To ob-
tain these error models, we decoded the training data with
acoustic models based on a universal phone recognizer (UPR)
provided by the Department of Defense [7]. This recognizer
uses 259 phones based on the International Phonetic Alphabet
(IPA), and represents an effort similar to that pioneered with
the GlobalPhone project and others [9, 10].
The UPR system was built using the HTK Recognizer,

version 3.3 and was trained iteratively, starting with data that
was transcribed at the phone level, and later incorporating
data that was transcribed at the word level. In the rst stage
of training the UPR, phonetically transcribed data was taken
from the Phonetic Switchboard Corpus [11, 12] in English,
and the OGI-MLTS Corpus [13] in English, German, Hindi,
Japanese, Mandarin Chinese, and Spanish. Word-level tran-
scriptions were later used to incorporate data from LDC data
sets (e.g. CallHome and CallFriend) in a variety of languages.
The total amount of acoustic training data used in the ve lan-
guages studied here varied from about 15 hours in German to
88 hours in English. The overall training process was de-
signed to ensure that sounds represented by a given phone are
consistent across languages and that important phonemic dis-
tinctions in one language are annotated in all languages.
The UPR acoustic models have diphone acoustic context,

with 17 gaussians per state. The acoustic features were 39-
dimensional, consisting of cepstra, deltas and double-deltas,
and decodingwas performed at the speaker-independent level.
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Fig. 1. Output word error rate vs. input phone error rate

The UPR makes use of n-gram phonotactic language mod-
els trained on transcripts of LDC data as well as data found
on the Web. Language-speci c phonotactic bigram language
models were built for all the languages used in our experi-
ments. Further details of the UPR phone set, acoustic model,
and phonotactic language models can be found in [7].
The UPR can be run using either a truly universal model

or using language-speci cmodels. We used language-speci c
models to decode the CallHome training data and create the
error models. The phone-error rates on the test data varied
from 56.4% in English to 63.0% in German.

4. ROBUSTNESS TO PHONETIC ERRORS

This section reports on the sensitivity of the transduction pro-
cess to the overall error level in the input phone stream. The
experiments all use a base error model that is obtained by de-
coding the CallHome training data with the UPR, aligning it
to the reference phoneme strings, and computing the various
substitution, insertion and deletion probabilities. This is done
separately for each language. To obtain error models at a vari-
ety of absolute error levels, we then scale this matrix down by
moving probability mass from insertions, deletions and non-
identity substitutions to identity substitutions. By corrupting
the reference phones with the various error matrices and then
measuring our ability to recover the correct words, we deter-
mine the sensitivity of the decoding process to input errors.

4.1. Accuracy and Speed

Figure 1 plots transduced word error rate (WER) as a func-
tion of the input phone error rate (PER). To a rst approxi-
mation, the two are related by WER = 1.4PER + εlang.
The slope in all cases is approximately 1.4, and there is a lan-
guage dependent y-intercept. These results show no evidence
of redundancy – if redundancy were present, one would ex-
pect a threshold effect in which very low phone-error rates

Phone-to-wordWER Entropy: bits
Egyptian 0.6% 0.0020
German 0.9 0.029
English 2.3 0.080
Spanish 5.0 0.18
Mandarin 8.9 (CER) 0.44

Table 2. Conditional entropy of words given phones

would have little or no impact on word error rate. In terms
of runtime, we have found that whereas the word error rate
scales linearly with phone error rate, the runtime increases ex-
ponentially from less than one-two thousandth realtime in the
absence of error to one-tenth realtime with about 50% phone
error rate. Again, this is similar across the languages studied.
All experiments were run with a xed beam such that there
was little accuracy loss at high phone error rates.

4.2. Conditional Entropy: Explaining the y-intercept

The transduced word error rate achieved in the absence of
any phone errors is not zero, and differs by over a factor of
ten from 0.6% to 8.8% across the different languages. To
understand the observed differences in the y-intercept, we ex-
amine the conditional entropy of words given phones, which
can be computed as the entropy of the words less the mutual
information between phones and words. To de ne the mutual
information between phones and words, let rs be the phone
sequence for utterance s in the database. Let ls be the word
sequence. Note that sums over s are thus over the observed
data segments. Let R and L be phone-sequence and word-
sequence variables respectively that take speci c values such
as rs and ls. Then

M(L; R) =
X

L,R

P (L, R) log
P (L, R)

P (L)P (R)

≈
X

s

log
P (rs, ls)

P (rs)P (ls)

=
X

s

log
P (rs|ls)P

w
P (rs|w)P (w)

P (w) is given by the language model. P (rs|w) is the prob-
ability of an observed phone string given a word string. It is
given by the sum over all the alignments of rs to the phones in
w of the probability of the substitutions, insertions and dele-
tions in the alignment, and can be computed using dynamic
programming.
The quantity M(L; R) is a measure of how much infor-

mation the phones provide about the words. If we letH(L) be
the entropy of the language, thenM(L; R) − H(L) provides
a measure of the excess information that is available when in-
ferring words from phones, and its negative is in fact the en-
tropy of the language conditioned on knowledge of the phone
strings. In general, M(L; R) is dif cult to compute since it
involves summing over all possible word sequences in the de-
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Fig. 2. Sensitivity to individual phones

nominator. To simplify the computation, we have approxi-
mated the sum over all data segments by a sum over the words
in the lexicon weighted by their unigram frequency. Essen-
tially this uses a notional data set consisting of the words in
the lexicon. Table 2 shows the conditional entropy along with
the round trip word word error rates. It can be seen that there
is a good correlation between this entropy and the observed
word error rate.

5. SENSITIVITY TO INDIVIDUAL PHONES

By using our noisy channel model, we have been able to study
the sensitivity of word error rate to individual phones in two
ways. The rst uses the corruption process described in sec-
tion 2. Insertions, deletions and substitutions are made ac-
cording to the empirically derived error model, with one ex-
ception: all errors involving a particular phone are excluded.
The corruption process is run separately for each phone, and
the resulting strings are transduced to words. The transduced
word error rate is then computed, and we compute the de-
crease in error rate over the baseline where no errors are ex-
cluded. To normalize against frequency effects, we also count
the number of phone errors that have been excluded from the
input. This allows us to create a scatterplot of the number of
word errors corrected after transduction against the number
of phone errors corrected on the input side. This is shown in
Figure 2 for each phone in each of the languages studied.
The second method of computing sensitivity to individ-

ual phones avoids the arti cial corruption process. This is
done by aligning the phone-level UPR output to the reference
phone string. Then, for a particular phone, we x all the er-
rors involving the phone. The remaining steps are identical to
the rst method, and we obtain another scatterplot. This plot
is similar to that of Figure 2 with somewhat greater disper-
sion. The fact that Figure 2 is on a log-log scale with a slope
of about 0.9, indicates that there is a slight tendency such that
phones which are frequently involved in errors are relatively
downweighted.

6. DISCUSSION

This paper has examined the robustness of phone-to-word
transduction in a variety of languages and over a range of
error rates. We nd that the introduction of a phone error
on average creates about 1.4 word errors, and this is seen to
be constant across the ve languages studied, and across a
wide range of absolute error levels. At the level of individual
phones, the sensitivity to errors is almost linear as well, but
seems to be optimized in the sense that frequently mislead-
ing phones have slightly less impact per error than their more
reliable counterparts.
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