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ABSTRACT

By combining audio and visual modalities, the speech recognition
systems achieve higher performance and robustness. The fusion
strategies to this point are mainly three types: feature level fusion,
model level fusion, and decision level fusion. In this paper, we
present a novel audio-visual fusion framework, in which a joint di-
mensionality reduction approach is used to project the audio and vi-
sual features into more compact subspaces. With correlation pre-
serving criteria, the representations of projected audio and visual
features will be able to preserve the correlation conveyed in the orig-
inal audio and visual feature space. At the same time, the better
model efficiency is achieved in the more compact feature spaces.
The experiments on audio-visual person verification demonstrate the
efficiency and effectiveness of the proposed fusion framework.

Index Terms— Audio-visual fusion, dimensionality reduction,
canonical correlation analysis, audio-visual person verification.

1. INTRODUCTION

Fusion of multimodal information is an important topic for modern
pattern recognition systems. Due to the the increasing availability
of multimodal data, more and more pattern recognition systems are
fusing different modalities to achieve better performance/robustness,
such as audio-visual speech recognition, audio-visual speaker veri-
fication and audio-visual person tracking, etc. As a special type of
fusion, audio-visual fusion is particular interesting because of these
two modalities convey the most important information for human
computer communication. Researchers from computer vision, mul-
timedia and speech processing have given intensive efforts on this
problem. Audio-visual speech recognition has been shown superior
performance over the conventional speech recognizer. Visual speech
recognition is originally proposed to help acoustic speech recognizer
in the scenario of Automatic Speech Recognition (ASR) by Petajan
[1]. Although significant progress has been made on ASR in recent
decades, the performance of the state-of-the-art system is still be-
yond the practical requirement. Most state-of-the-art ASR systems
only use the acoustic signal for recognition, which makes it suscepti-
ble to acoustic noise [2]. Visual speech, on the other hand, is not af-
fected by acoustic noise and it provides partial information about the
place of articulation (visibility of tongue, teeth and lips). Since Peta-
jan [1], the visual speech information has been successfully adopted
by ASR system to achieve better accuracy and robustness [3, 4, 5, 6].

In spite of the success of visual speech recognition, there are
two major open problems. One is to normalize the visual feature
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for different speakers. In current appearance based method, there
is no mechanism to compensate the appearance difference between
speakers which results in poor generalization ability to recognize
the visual speech for an unseen person. The other problem is the
feature extraction of visual and acoustic data are done separately,
which enlarges the possibility that detailed correlation structure may
not be picked up with current independent feature extraction pro-
cedure. Among all the proposed fusion schemes in the literature,
there are mainly three types. The first is early fusion, so called fea-
ture level fusion, which simply concatenates the different modality
features together. This type of fusion often suffers inferior perfor-
mance compared to the other fusion methods. The late fusion is also
called model-based fusion which combines two modalities by fusion
two single-modality statistical models to form a hybrid (multimodal)
statistical model. This multi-modality statistical model has two dif-
ferent types of observations which are fused in the model level. The
third fusion strategy is decision level fusion which basically inte-
grates the output of two single-modal statistical models.

The main contribution of this paper is the fusion scheme based
on joint dimensionality reduction. The detailed A-V correlation can
be efficiently captured in a more compact feature space. Compared
with conventional A-V fusion methods, the proposed method has
more capability to fine tune the detailed A-V correlation. Experi-
mental results show that this method successfully captures the cor-
relation between A-V modalities. Also, it achieves the best fusion
benefit over than conventional fusion methods.

2. AUDIO-VISUAL FUSION METHODS

There are lots of fusion methods proposed in the literature. Gener-
ally, they belong to three types: early fusion so called feature level
fusion, model level fusion and decision level fusion. The last two fu-
sion methods are also called late fusion methods. These three fusion
types are summarized as follows.

Feature Level Fusion. Feature level fusion is one of the simplest
methods to integrate audio and visual information [3, 4, 7]. Basi-
cally, it concatenates the audio feature A and visual feature V at the
same time to a larger feature vectorO = (A, V ). Then based on this
new observation, the probabilistic model is learned in this new fea-
ture space to compute the likelihood P (O|λ) = P (A, V |λ) of the
observation, where λ is the model parameter. Despite of the simplic-
ity of feature level fusion, this method often suffers inferior fusion
performance compared to state level and decision level fusion. The
main reason is that the information conveyed in audio stream and vi-
sual stream are often not equal and even time varied, so the equally
weighted concatenation is a suboptimal solution.

State Level Fusion. Instead of concatenation in feature level fu-
sion, state level fusion is combining the state likelihood of prob-
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Fig. 1. Joint dimensionality reduction for audio-visual fusion.

abilistic models of audio stream and visual stream[3, 8, 9, 6, 10].
The likelihood of the observation on an A-V state S = (SA, SV )
is given by P (A, V |S, λ) = P (A|SA, λ)βP (V |SV , λ)1−β , which
is the weighted combination of the likelihood of individual modal-
ity. In this procedure, the A-V features are normalized by each state
parameters. In this sense, the state fusion is more preferable than fea-
ture level fusion. Also, the asynchrony of A-V streams can be mod-
eled by specific topology of the probabilistic model, such as coupled
hidden Markov model [8]. The weighting of each modalities can be
easily adopted by weighted summation of the log likelihood score
of audio streams and visual streams. So far, state level fusion is the
state-of-the-art for A-V speech recognition.

Decision Level Fusion. Unlike the state level fusion, decision
level fusion is to combine the final likelihood of audio and visual
probabilistic models, e.g. P (A, V |λ) = P (A|λ)αP (V |λ)1−α . Its
scheme is much easier than state level fusion methods. However, it
is often slightly worse than state level fusion.

3. AUDIO-VISUAL FUSION BASED ON JOINT
DIMENSIONALITY REDUCTION

The three methods mentioned above treat audio and visual feature as
a whole vector. And the feature extraction of audio and visual modal-
ity are done independently. However, the feature extracted from
each modality might be equally correlated to each other. For ex-
ample, the lip region within the face region is more related to speech
signal than other facial parts. So we can reduce the original audio
and visual feature to a more compact feature space while still pre-
serving the correlation between A-V feature in the original feature
space. This procedure is essentially a joint dimensionality reduction
which tries to preserve the correlation after projection. After dimen-
sionality reduction, we can only model the joint distribution in this
compact A-V feature space which leads to better model efficiency
and less parameters. Figure 1 illustrates the basic idea of the pro-
posed fusion framework. The audio feature A and visual feature V
are simultaneously projected into more compact feature subspaces.
And the joint distribution P (A, V |λ) in the original spaces can be
approximated by the factorized distribution in the projected spaces
P (A, V |λ) ∼ P (A1, V1|λ)P (A2|λ)P (V2|λ), whereA1 and V1 are
the most correlated A-V features. A2 and V2 are the least correlated
features.

3.1. Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) turns out to be one of this
kind of joint dimensionality reduction technique. CCA was orig-
inally developed by H. Hotelling [11]. It tries to find two sets of
bases simultaneously for two multidimensional random variablesX

and Y . After projection on these two set of bases, the correlations
between the projected variables are mutually maximized. Therefore,
this dimensionality reduction is to preserve the correlation conveyed
in the original features. CCA has enjoyed popularity in statistics,
economics, medical studies and meteorology. [12, 13, 14].

Without losing generality, let us consider only one pair of bases
wx in X and wy in Y space respectively. The bases pair associated
with the largest canonical correlation can be solved by the following
optimization problem.

(
w∗

x

w∗

y

)
= arg max

wx,wy

E[wTxXY
Twy]√

E[wTxXXTwx]E[wTy Y Y Twy]
(1)

= arg max
wx,wy

wTxCxywy√
wTxCxxwxwTy Cyywy

, (2)

where,

• the maximum of the correlation wTx Cxywy√
wTx Cxxwxw

T
y Cyywy

with

respect to wx and wy is the maximum canonical correlation
projections.

• Cxx = E[XXT ] and Cyy = E[Y Y T ] are within-sets co-
variance matrices.

• Cxy = E[XY T ] = C′

yx are the cross-sets covariance matri-
ces.

It is clear that scale upwx andwy will not change the correlation
in Eq.1. The original optimization problem can be transformed into
a constrained optimization problem.

(
w∗

x

w∗

y

)
= arg max

wTxCxxwx = 1
wTy Cyywy = 1

w
T
xCxywy. (3)

By the lagrange multiplier method, the final solution is based on
eigen-value equations

{
C−1

XXCXY C
−1

Y Y CYXŵX = ρ2ŵX
C−1

Y Y CYXC
−1

XXCXY ŵY = ρ2ŵY
, (4)

where ρ2 is the squared canonical correlation and ŵX and ŵY are
the normalized canonical correlation basis vectors.

Canonical correlation analysis is closely related to mutual infor-
mation maximization procedure. In fact, the correlation is just one
special type of mutual information between two random variables.
If there is no higher order statistics between two random variables,
which is true if the two random variables are Gaussian distributed,
the canonical correlation analysis will be equal to maximizing the
the mutual information between the projected x and y. Also, there
is close relationship between CCA and LDA. If one random variable
of CCA is actually a discrete random variable, it can be shown that
CCA is equal to LDA. Furthermore, [15] shows that Principal Com-
ponent Analysis (PCA), Partial Least Squares (PLS) and Multivari-
ate Linear Regression (MLR) and CCA can be unified in a general
eigenvalue decomposition formulation.

4. AUDIO-VISUAL FUSIONWITH CCA

The acoustic feature used in this paper is the widely adopted Mel
Frequency Cepstral Coefficient (MFCC). And the visual feature is
the PCA projection of the whole face images. Although, CCA can
learn the correlation between the original whole face image with
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speech signal. The PCA analysis will increase the numerical sta-
bility of the CCA computation. Therefore, we apply PCA before
CCA in this paper.

Since we are evaluating the proposed fusion method on an text-
independent A-V speaker verification task. The Gaussian Mixture
Model (GMM) [16] is used as modeling method to capture the char-
acteristic of each speaker.

AnM -mixture GMM is defined as a weighted sum ofM com-
ponent Gaussian densities

p(x̄|λ) =

M∑

m=1

wmN(x̄|μ̄m,Σm), (5)

where x̄ is a D-dimensional feature vector, wm is the mth mixture
weight, and N(x̄|μ̄m,Σm) is a multivariate Gaussian density, with
mean vector μ̄m and covariance matrixΣm. Note that

∑
M

m=1
wm =

1.
A speaker model λ = {wm, μ̄m,Σm}M

m=1
is obtained by fit-

ting a GMM to a training utterance X = {x̄1, x̄2, ..., x̄T } using the
Expectation-Maximization (EM) algorithm. The log likelihood of a
testing utterance Y = {ȳ1, ȳ2, ..., ȳT } on a given speaker model λ
is computed as follows,

LL(Y |λ) =
1

T

T∑

t=1

logp(ȳt|λ), (6)

where p(ȳt|λ) is the likelihood of the tth frame of the utterance.
To identify an utterance as having been spoken by a person out of
a group of N people, we compute its utterance scores against all N
speaker models and pick the maximum

λ̂ = argmax
λn

LL(Y |λn), (7)

where λn is the model of the nth speaker.
The GMM algorithm described above requires that every speaker

model be trained independently with the speaker’s training data. In
the case when the available training data are limited for a speaker,
the model is prone to singularity. To tackle this problem, the UBM-
GMM algorithm [17], a different scheme, is adopted to train the
speaker models. A single speaker-independent Universal Background
Model (UBM) λ0 is trained with a combination of the training data
from all speakers, and a speaker model λ is derived by updating the
well-trained UBM with that speaker’s training data via Maximum A
Posteriori (MAP) adaptation [17]. The final score of the testing ut-
terance is computed by the log likelihood ratio between target model
and background model.

LLR(Y ) = LLR(ȳT1 ) =
1

T

T∑

t=1

log
P (ȳt|λ1)

P (ȳt|λ0)
, (8)

where ȳT1 is the feature vector of the observed utterance—test utter-
ance Y , λ0 is the parameter of UBM and λ1 is the parameter of target
model. Essentially, the verification task is to construct a generalized
likelihood ratio test between hypothesisH1 (observation drawn from
the target) and hypothesis H0 (observation not drawn from the tar-
get).

The advantages of the UBM-GMM over the GMM are two-fold.
First, the UBM is trained with a considerable amount of data and is
thus quite well-defined. A speaker model, obtained by adapting the
parameters of the UBMwith a small amount of new data, is expected
to be well-defined, too. Hence, the UBM-GMM approach should be
robust to limited training data. Second, during adaptation, only a
small number of Gaussian components of the UBM are updated.

• Audio only system
P (A|λ) (9)

• Visual only system
P (V |λ) (10)

• Feature level fusion system

P (A, V |λ) (11)

• Decision Level fusion system

P (A|λ)αP (V |λ)1−α (12)

• CCA fusion system

P (A, V |λ) = P (A1, V1|λ)P (A2|λ)P (V2|λ) (13)

Within the UBM-GMM framework, audio only speaker modeling is
combing the acoustic features (MFCCs) of all the speakers to train
a audio only UBM model. Then MAP adaptation is applied to gen-
erate the model for each speaker. Visual only speaker modeling is
combing all the visual features to train a visual only UBM model.
The visual feature is a PCA projected of the whole face region. The
PCA space is learned from the face images of all speakers.

In order to fuse the two modalities, shown in Eq. 9 and 10, for
better performance, an A-V fusion module is applied to combine
these two modalities. Eq.11 shows the feature-level fusion, which
mainly concatenates the features from different modalities as a sin-
gle big feature vector. State level fusion is to fuse the observation
likelihood of different modalities on the same state. However, in the
text-independent speaker recognition task, it is difficult to encod-
ing the strict temporal information from audio and visual streams.
Hence, it is difficult to apply state level fusion methods. To circum-
vent this difficulties, we compare CCA based fusion Eq.13 with the
decision level fusion in Eq.12.

5. EXPERIMENTS AND RESULTS

A set of experiments are conducted to evaluate the proposed method.
The database used in our experiments contains 102 subjects. For
each subject, half hour of video was recorded in a studio environ-
ment. The speech scripts include connected-digits and continuous
sentences. For text independent speaker identification, we randomly
select 30sec of speech as training data for each speaker and 10sec
speech as testing data. The corresponding videos are then tracked
and cropped before the visual feature extraction. The tracking al-
gorithm applied in this paper in based on the work by J. M. Buena-
posada [18].

The demonstration experiment is about the correlation structure
between the whole face region with the speech signal. For a video
sequence containing the whole face region for one subject, the CCA
analysis is performed between every local patches around a pixel
position in the face region with the speech signal. If the CCA can
find the true relation between facial regions and speech signals, the
lip region should be the most correlated local patches among all the
patches sampled in the whole face region. Figure 2 shows the result
of this experiment. At each pixel position, the largest canonical cor-
relations between the local patches and speech signals are recorded
as the values at this position. Therefore, the result is actually a 2D
surface on the image plane. By searching the maximum point in this
surface, we can locate the maximum correlated local patches with
speech signals. The right column illustrates this maximum corre-
lated local patches which are truly the lip regions.
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Fig. 2. CCA analysis is performed for the local patches covering
the whole face region. The highest correlation score at each pixel
position constructs the surface in the middle column. Clearly, lip
patch is highlighted due to the high correlation between audio and
visual streams.

To verify the CCA based fusion method, the text-independent
speaker recognition experiments are conducted on a video database,
which contains 102 subjects. The video is up sampled to 100 frames
per sec to match the speech frame rate. The results are shown in
Table 1. From these results, the CCA based fusion clearly achieves
the best improvement by combing the audio and visual modalities.
When the model is a 8-component GMM-UBM framework, the CCA
based fusion achieves 98.04% accuracy. Notice, at the 4-component
GMM-UBM setting, the audio-only and visual-only systems can
only achieve less than 50% accuracy, while the fusion based on CCA
boosts the performance to 91.18%. The A-V(CCA) achieves its
highest performance by 99.02% in the 16-component GMM-UBM
setting. These results clearly confirm that the CCA based fusion
achieves much better modelling efficiency.

6. CONCLUSION AND DISCUSSION

In this paper, we proposed a novel A-V fusion framework based on
joint dimensionality reduction. With this framework, the A-V cor-
relation can be preserved in the feature extraction procedure, which
makes the approach more flexible to find details of the A-V corre-
lation. By formulating the joint dimensionality reduction problem
in the framework of canonical correlation analysis [11], we obtained
very efficient and stable joint dimensionality reduction technique for
A-V fusion. The experimental results show that this method success-
fully capture the correlation between A-V modalities. In recognition
experiments, CCA based fusion achieves the best fusion improve-
ment over than conventional fusion methods. With this initial suc-
cess of CCA based fusion technique, more experiments are expected
in future to fully explore the properties of the proposed method.
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